
tightcenter

1

panikzettel.htwr-aachen.de

Advanced Automata Theory Panikzettel
Caspar Zecha, Tobias Polock,

Philipp Schröer, Julian Schakib-Ekbatan

Version 6 — 19.08.2020

Contents

1 Introduction

This Panikzettel is about the lecture Advanced Automata Theory by Prof. Löding held in the
summer semester 2018.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

2 Notation and Automata

We use the following notation in this lecture and define the basic automata:
• Σ, Γ, . . . for alphabets,
• a, b, . . . for letters,
• ε for the empty word,
• u, v, w, . . . for words,

• Σ∗ (Σ+) for the set of words (of non-empty
words) over Σ,
• L, K, . . . for languages (subsets of Σ∗),
• A,B, . . . for automata.

Definition: Nondeterministic Finite Automa-
ton (NFA)

A = (Q, Σ, q0, ∆, F) with
• finite state set Q, initial state q0 ∈ Q,
• transition relation ∆ ⊆ Q× Σ×Q,
• set F ⊆ Q of final states.

A accepts w = a1 . . . am if there is a run $ =

$(0) . . . $(m) with $(m) ∈ F and $(0) = q0,
($(i− 1), ai, $(i)) ∈ ∆.

The language recognised by A is L(A) :=
{w ∈ Σ∗ | A accepts w}.

Definition: Deterministic Finite Automaton
(DFA)

A = (Q, Σ, q0, δ, F) with
• finite state set Q, initial state q0 ∈ Q,
• transition function δ : Q× Σ→ Q,
• set F ⊆ Q of final states.

The language accepted by A is L(A) :=
{w ∈ Σ∗ | δ∗(q0, w) ∈ F}. δ∗ : Q× Σ∗ →
Q is defined as:

δ∗(q, ε) := q,

δ∗(q, wa) := δ(δ∗(q, w), a).

2

https://panikzettel.htwr-aachen.de
https://git.rwth-aachen.de/philipp.schroer/panikzettel

We can create a DFA from an NFA recognising the same language by using subset construction.
Here the idea is to collect the NFA’s non-deterministic possibilities as subsets, consisting of all
reachable states from the previous subset. The initial subset consists of only the initial state. Subset
construction on an NFA with n states may in worst case lead to a DFA with 2n states.

3 Minimisation of NFAs

DFAs can be minimised by merging equivalent states. The result is a unique minimal DFA that is
equivalent to the given DFA. This minimisation is efficient (polynomial time).

We want to analyse the problem of state merging on NFAs, i.e. taking the quotient of an automaton.
Merging states can change the accepted language.

3.1 Quotient Automaton

Let A = (Q, Σ, q0, ∆, F) be an NFA and let ∼ be some equivalence relation (reflexive, symmetric and
transitive) on Q. For a state q ∈ Q, the equivalence class is defined as [q]∼ = { p ∈ Q | p ∼ q }.

Now the quotient automaton A/∼ of an NFA with respect to some equivalence relation ∼ is easy.
Merge states into equivalence classes (single states) and connect two classes if there exists a transition
from a state of one class to a state in the other class. A state representing an equivalence class is
initial or accepting if at least one of the states it contains is.

By induction one can show that the quotient automaton accepts all words in L(A) and an example
can be given where the equivalence relation leads to L(A) ⊂ L(A/∼). Thus in general L(A) ⊆
L(A/∼). To assure that the language is not changed consider only relations which merge language
equivalent states.

3.1.1 Quotient on DFAs

Viewing a DFA as an NFA and then applying the quotient operation on the NFA, the resulting
quotient A/∼ is a DFA again exactly if ∼ is a congruence relation w.r.t. the transition function δ:
p ∼ q =⇒ δ(p, a) ∼ δ(q, a) ∀ a ∈ Σ.

For DFA A and q ∈ Q, let Aq be the DFA A with q as initial state. We then define ∼A by q ∼A p iff
L(Aq) = L(Ap) and call states q and p language equivalent.

Using this, the quotient A/∼A is the minimal DFA accepting the same language as A. The minimal DFA
can be computed efficiently in O(|Σ||Q| · log |Q|).

3

3.2 Reduction of NFAs

Minimal NFAs can be exponentially smaller than
minimal DFAs w.r.t. the number of states. How-
ever, there can be several non-isomorphic mini-
mal NFAs for a language.

Additionally, deciding whether an NFA is mini-
mal is computationally hard (PSPACE-complete),
as are the two other decision problems on the
right. Remember: P ⊆ NP ⊆ PSPACE.

Definition: NFA Decision Problems

Given NFAs A, B over the same alphabet.
1. Is B an NFA equivalent to A with the

least possible number of states?
2. Are A and B equivalent?
3. Is L(A) 6= Σ∗? (minimal NFA has

more than one state)

3.3 Bisimulation

Bisimulation provides an equivalence relation on
the states of an NFA. It is similar to the ∼A
relation for DFAs.

The bisimulation relation ≈A is the biggest rela-
tion (w.r.t. ⊆) that satisfies the following three
conditions: If p ≈A q, then

• p ∈ F ⇔ q ∈ F,
• ∀(p, a, p′) ∈ ∆ ∃(q, a, q′) ∈ ∆ : p′ ≈A q′,
• ∀(q, a, q′) ∈ ∆ ∃(p, a, p′) ∈ ∆ : p′ ≈A q′.

This relation can also be characterised as the
bisimulation game (see right). If the Duplica-
tor has a winning strategy in BG(A, p,B, q), we
call (A, p) and (B, q) bisimilar. p ≈A q ⇐⇒

(A, p) ≈ (A, q)

Definition: Bisimulation Game

Given two automata A,B with p ∈ QA
and q ∈ QB , we denote the bisimulation
game between the spoiler and the duplicator
as

BG(A, p,B, q).

From a configuration (p′, q′) the spoiler
chooses a transition (p′, a, p′′) ∈ ∆A or
(q′, a, q′′) ∈ ∆B .

Then the duplicator reacts accordingly
from the other state.

Unless the spoiler creates a configuration
(p̃, q̃) such that p̃ ∈ FA ⇔ q̃ 6∈ FB or the
duplicator doesn’t have a transition over
the chosen letter, the duplicator wins.

3.4 Block Refinement

We can compute the bisimulation equivalence
using block refinement. This algorithm iteratively
tries to split blocks of states until they cannot be
separated by words anymore.

When the blocks can be split, they’re called not
compatible: If there are p, q ∈ B with

• ∃(p, a, p′) ∈ ∆ with p′ ∈ B′

• ¬∃(q, a, q′) ∈ ∆ with q′ ∈ B′

The algorithm’s complexity is O(|∆| · |Q|).

Algorithm: Block Refinement

Input: NFA A = (Q, Σ, q0, ∆, F).

Output: Partition π.

1. π = {Q \ F, F }.
2. While ∃ B, B′ ∈ π, a ∈ Σ such that

B is not compatible with (B′, a):
• split B with respect to (B′, a) into
{ p ∈ B | ∃ p′ ∈ B′ : (p, a, p′) ∈ ∆ },
{ p ∈ B | ¬ ∃ p′ ∈ B′ : (p, a, p′) ∈ ∆ }.

4

3.5 Comparison of Reductions

Thus the ≈A-quotient can be bigger than the ∼A-quotient. The latter can be bigger than the optimal
quotient (the smallest quotient NFA that accepts the same language as A). But the optimal quotient
is not necessarily the smallest equivalent NFA, imagine for example an NFA that does not use its
non-determinism: its quotient automaton can not be smaller than the minimal DFA.

4 Learning Algorithms for DFAs

We want to develop an algorithm (learner) that constructs a deterministic finite automaton for an
unknown language L. The learner has some information about L. Different settings are possible:

• Passive: The learner is given a finite set of words (not) in L.
• Active: The learner can query the language. They can ask whether a word w is in L or can

construct an automaton A and ask whether L = L(A).

4.1 Passive: Construction of Finite Automata from Examples

We first consider the passive learning where we
want learners as computable functions f that
take a sample S and return a DFA A = f (S).

The learner should be consistent, that is f (S)
should be consistent with every sample S. But
this is not enough, as a simple consistent learner
may not generalise well – e.g. accepting precisely
the given samples, but not more.

Therefore we define f learning in the limit if there
is an n0 such that for all n ≥ n0 : L(f (SL,n)) = L.

The set of positive (negative) samples contains
all words that are lexicographically smaller than
the nth word and (not) in the language L.

Definition: Sample

Samples are of the form S = (S+, S−) where
S+ (S−) is a finite set of positive (negative)
examples where S+ ∩ S− = ∅.

A DFA A is consistent with S if S+ ⊆ L(A)
and S− ∩ L(A) = ∅.

SL,n
+ = { wi ∈ L | i ≤ n }

SL,n
− = { wi /∈ L | i ≤ n }

SL,n = (SL,n
+ , SL,n

−)

Let f be a learner such that f (S) is a smallest DFA that s consistent with S, for each sample S. Then,
f learns all regular languages in the limit. There exists a learner that constructs a smallest DFA that
is consistent for each sample S. The learner enumerates all DFAs by increasing size and checks for
consistency with S.

Unfortunately, checking whether there exists a DFA with at most m states that is consistent with
a sample S is NP-complete. This can be shown using a reduction from the 3-Coloring decision
problem which translates to the question ”Is there a consistent DFA with at most 4 states?”, encoding
adjacency constraints of the coloring problem in the negative samples and using positive samples to
simulate coloring.

5

4.2 Regular Positive Negative Inference (RPNI)

The RPNI-algorithm is a learner that computes a DFA f (S) for a sample S in polynomial time and
learns every regular language in the limit.

The algorithm first constructs a simple “prefix tree acceptor” DFA A(S+) which accepts exactly
all words from S+. Then the automaton is simplified using quotients with regard to congruence
relations. The quotients are tried in canonical order, and only those that are consistent with the
sample are used. Thus the automaton is simplified and its language is generalised, i.e. S+ is still
accepted, and S− is still rejected.

Algorithm: Regular Positive Negative Inference (RPNI)

Input: Sample S = (S+, S−).

Output: (partial) DFA A(S+)/∼.

1. Construct A(S+) accepting precisely S+. (States are prefixes of words in S+)
2. Sort states Q+ = { u0, . . . , un } from A(S+) in canonical order: u < v ⇐⇒ |u| <
|v| ∨ (|u| = |v| ∧ u is before v in lexicographic ordering).

3. Initialise ∼ = { (u, u) | u ∈ Q+ }.
A(S+)/∼ looks just like A(S+).

4. For each ui ∈ Q+ \ { u0 }:
• If ui 6∼ uj for all uj ∈ { u0, . . . , ui−1 }:

Skip words that have already been merged with smaller words (in canonical order)

– Try next uk ∈ Q+ with k < i, until L(A(S+)/∼′) ∩ S− 6= ∅.
Try to merge with the next (smaller) state (in canonical order) such that no negative example is accepted.

∗ ∼′ = extend ∼ to the smallest congruence with (ui, uk).
Merge states containing ui and uk and preserve congruence, i.e. if merging creates transitions to

different states in the quotient, recursively merge those too.

– Commit ∼ = ∼′.

We consider the question “When is a sample complete enough for RPNI to produce a DFA for L?”

First we need minimal representatives and minimal transition representatives for L:

MR(L) := { w ∈ Σ∗ | w ∈ pr f (L) ∧ ∀ u ∼L w : w ≤ u }

MTR(L) :=
{

w ∈ Σ∗
∣∣∣∣ w ∈ pr f (L) ∧ w = ua

u ∈ MR(L) ∧ a ∈ Σ

}

We define a sample S RPNI-complete for L if

• For each q ∈ FL (FL being the final states in the minimal automaton for L), there is a u ∈ S+

such that u reaches q in AL,
• ∀w ∈ MTR(L), there is a v ∈ Σ∗ such that wv ∈ S+,
• ∀ u ∈ MR(L) and ∀ v ∈ MTR(L) with u 6∼L v, there exists a w such that uw, vw ∈ S and

uw ∈ S+ ⇐⇒ vw ∈ S−.

If a sample is RPNI-complete, then RPNI will compute the minimal DFA for the language. For each
regular language L, there is a RPNI-complete sample of polynomial size in the size of AL.

6

4.3 Active Learning with L∗

In active learning the learner can ask specific questions about the target language. We consider the
Minimally Adequate Teacher (MAT) model which has the following two types of questions:

• Membership queries: “Is w ∈ L?” for a chosen word w.
• Equivalence queries: “Does A accept L?” for a DFA A.

If the answer is “no”, then the teacher provides an arbitrary counter-example w.

The L∗ algorithm asks these queries to build a minimal DFA for the target language. It does so
indirectly by inferring ∼L-classes, which correspond to states in AL.

The general idea is as follows: We have a set of representatives R ⊆ Σ∗ for our equivalence classes
and a set of words, called experiments E ⊆ Σ∗. We’ve found a new representative u ∈ R · Σ if u is
escaping: For all other representatives v ∈ R there is an experiment w ∈ E, so that uw ∈ L⇔ vw /∈ L.
One can think of u and the vs as states in the automaton: If starting from state u we get a different
result reading w than starting from all vs, u must be a distinct state.

If u is not escaping, there is a unique representative v ∈ R with uw ∈ L ⇐⇒ vw ∈ L for all
experiments w ∈ E. Then u and v are called compatible.

All our measurements are saved in an observation table B = (R, E, f) with
representatives R, experiments E and the data provided by a function f :
(R · E ∪ R · Σ · E)→ { 0, 1 }. B is an observation table for L if f (w) = 1⇔ w ∈ L.

In the top part, we have the R · E. Throughout the algorithm, rows in the top are all
distinct – each row corresponds to one equivalence class. The bottom part contains
all other measurements. Iff a row in the bottom is unique among all others, then
the corresponding w ∈ R · Σ is escaping and we make it a representative (move it
to the top). B is closed if no escaping w ∈ R · Σ exists.

B ε a

ε 0 1
a 1 1

ab 0 0
b 1 1

aa 1 1
aba 0 0
abb 1 1

After adding escaping words from R · Σ until B is closed, we construct the hypothesis AB and
ask the teacher the equivalence query. The construction of the automaton is simple: Each of the
representatives becomes a state, and each transition from a state u ∈ R with a goes to the unique
v ∈ R compatible with the word ua. Representative ε becomes the initial state. Final states are all
states with their representative u ∈ R evaluating to 1, i.e f (u · ε) = 1 in the observation table.

If the hypothesis is correct, we’re done. Otherwise, we extend the experiments E based on the
counter-example w = a1 · · · am the teacher provided. First, define ri = δ∗B(q

B
0 , a1 · · · ai) to be the state

reached in AB after reading the prefix of length i of w. Per construction of AB, this is always a
representative: ri ∈ R.

Now we search for a breakpoint i ∈ { 1, . . . , m } where our hypothesis automaton becomes wrong:
ri−1ai · · · am ∈ L ⇐⇒ riai+1 · · · am /∈ L. We then add the remaining suffix ai+1 · · · am to our
experiments E. This makes ri−1ai an escaping word and we must add it to R, introducing a new
state in our hypothesis.

7

Algorithm: L∗

Input: Teacher T for a regular language L ∈ Σ∗.

Output: DFA AB.

• Initialise B = (R, E, f) with R = { ε }, E = { ε } and f (w) = T(w) ∀w ∈ { ε } ∪ Σ.
• Repeat:

1. Add escaping words from RΣ to R until B is closed, and fill the table.
2. Ask an equivalence query for hypothesis AB = (QB, Σ, qB

0 , δB, FB) with: QB = R,
qB

0 = ε, FB = { u | f (u) = 1 }, and
δB(u, a) = v for the (unique) v ∈ R compatible with ua.

3. If the hypothesis is correct, return AB.
4. For a counter-example W = a1 · · · am:

a) Find a breakpoint i.
b) Add ai+1 · · · am to E and fill the table.

The algorithm L∗ terminates in polynomial time and returns a DFA AB that is isomorphic to AL.

Each iteration of the loop increases |R|, which is bounded by the index of L, since the representatives
are all in different ∼L-classes, separated by the experiments.

5 Automata and Logic

We want to decide whether all executions of a given transition system (automaton) satisfy a certain
specification. Therefore, we want a logic that is equivalent to automata in expressive power.

5.1 MSO Logic on Words

Definition: Word Structure

A non-empty word w = b1 . . . bm over Σ =

{ a1, . . . , an } defines the word structure
w = (dom(w), Sw,<w, minw, maxw, Pw

a1
, . . . , Pw

an
),

where

• dom(w) = { 1, . . . , m } are positions,
• Sw is the successor relation,
• <w the less relation on dom(w),
• minw = 1 and maxw = m and
• Pw

ai
:=

{
j ∈ dom(w) | bj = ai

}
for

i = 1, . . . , n.

Note that we can eliminate min, max and S in
FO and MSO, and in MSO < instead of S.

Definition: Syntax of MSO Formulae

Variables

x, y, z for positions,
X, Y, Z for sets of positions.

Constants

min, max

Atomic formulae

x = y equality
S(x, y) successor
x < y before
Pa(x) a at position x
X(y) y ∈ X

Complex formulae

with ¬, ∨, ∧,→,↔ and ∃, ∀.

8

We use monadic second-order (MSO) logic. This logic is a second-order logic with quantification over
unary predicates. We are allowed to quantify over sets! Given an alphabet Σ, we have MSOΣ[S,<]

formulae. Such formulae which only use quantifiers over first-order variables (position variables)
are called FOΣ[S,<] formulae. If there are free variables of a formula ϕ among x1, . . . , xm, X1, . . . , Xn,
then this is indicated by ϕ(x1, . . . , xm, X1, . . . , Xn). A sentence is a formula without free variables.

Definition: Interpretation of Formulae

If ϕ evaluates to true in w when interpreting xi by ki and
Xi by Ki:

(w, k1, . . . , km, K1, . . . , Kn) |= ϕ(x1, . . . , xm, X1, . . . , Xn)

or w |= ϕ[k1, . . . , km, K1, . . . , Kn]

• w a word structure,
• k1, . . . , km positions w,
• K1, . . . , Kn sets of positions in w.

The language defined by ϕ is
L(ϕ) :=

{
w ∈ Σ+

∣∣ w |= ϕ
}

.

If ϕ is an MSOΣ[S,<]-sentence, we call the language MSOΣ[S,<]-definable (MSO-definable for
short). If ϕ does not use set quantifiers, then the language is called FOΣ[S,<]-definable (FO-definable
for short).

5.2 The Equivalence Theorem

We show the equivalence of automata and formulae. In the direction from automata to formulae
we build a formula that expresses the existence of an accepting run in the automaton. In the other
direction from formulae to automata we use induction over the structure of the formula.

Theorem: Equivalence Theorem

A language L ∈ Σ∗ is regular iff it is MSO-definable.

5.2.1 From Automata to Formulae

We want to construct a sentence ϕA with w |= ϕA iff w ∈ L(A). ϕA has to express that there is an
accepting run of the NFA A on w.

The idea is to ask for i sets Xi, one for each state, where Xi is the set of positions in which A is in
state i.

Let A = ({1, . . . , m}, Σ, 1, ∆, F) be an NFA. A accepts w iff w |= ϕA.

ϕA := ∃X1, . . . ∃Xm[

∀x(X1(x) ∨ · · · ∨ Xm(x)) ∧∧i 6=j ¬∃x(Xi(x) ∧ Xj(x)) (X1, . . . , Xm form a partition)

∧X1(min) (on min, the initial state is used)

∧∀x∀y(S(x, y)→ ∨
(i,a,j)∈∆(Xi(x) ∧ Pa(x) ∧ Xj(y))) (transitions are used everywhere)

∧∨ (i, a, j) ∈ ∆, j ∈ F(Xi(max) ∧ Pa(max)) (last transition goes to an accepting state)

]

9

5.2.2 From Formulae to Automata

We construct the automaton inductively over the structure over the formulae. Since automata are
closed over negation, intersection and union, translation of ¬, ∧ and ∨ is easy. However, variables
are more difficult.

We first translate the formulae to MSO0, which
is a subset of MSO-formulae where all variables
are set variables (the usual first-order variables
are replaced). The idea here is to use singleton
sets { x } for all first-order variables x.

Theorem: MSO0 Equivalence

Each MSO sentence ϕ over words is equiv-
alent to an MSO0 sentence.

Definition: Syntax of MSO0

Like MSO, but only with set variables and:

Atomic formulae

X ⊆ Y subset
X ⊆ Pa only positions of a

Sing(X) |X| = 1
S(X, Y) X = { x } , Y = { y }, S(x, y)
X < Y X = { x } , Y = { y }, x < y

One can specify an automaton for each MSO0 formula inductively over the syntax of such formulae.
For simplicity, we restrict formulae to operators ∧,¬ and existential quantifiers. For MSO0 formulae
over Σ with n free variables, the automaton will recognise a language over the alphabet Σ× { 0, 1 }n.
The { 0, 1 }n part encodes membership of positions of the free (set-)variables X1, . . . , Xn. Note that
while words are defined over sentences (no free variables), an inductive definition requires handling
formulae with free variables that arise in sub-formulae of quantors.

For the translation, assume prenex normal form, that is Q1X1 . . . QnXn η(X1, . . . , Xn) with Qi ∈
{ ∀, ∃ }, η is quantifier-free. In the following we denote bitvectors in Σ× { 0, 1 }n as (a, x1, . . . , xn).

MSO0 Automaton

Xi ⊆ Xj Reject iff (a, x1, . . . , xn) with xi > xj occurs anywhere in the word.

Xi ⊆ Pa Reject iff (a′, x1, . . . , xn) with xi = 1 and a 6= a′ occurs anywhere in the word.

Sing(Xi) Check that (a, x1, . . . , xn) with xi = 1 occurs exactly once.

S(Xi, Xj) Check that the unique occurrence of (a, x1, . . . , xn) with xi = 1 is directly followed by
the unique occurrence of (a′, x′1, . . . , x′n) with x′j = 1.

Xi < Xj Check that the unique occurrence of (a, x1, . . . , xn) with xi = 1 is somewhere followed
by the unique occurrence of (a′, x′1, . . . , x′n) with x′j = 1.

¬ϕ Accept the complement of the automaton for ϕ.

ϕ ∧ ψ Accept the product of the automata for ϕ and ψ.

∃Xi ϕ A projection of the one for ϕ:
For each transition rule (p, (a, x1, . . . , xn), q) in the automaton for ϕ, the new
automaton contains a transition rule (p, (a, x1, . . . , xi−1, xi+1, . . . , xn), q)

Definition: Projection

Alphabets Σ1 and Σ2, function f : Σ1 → Σ2.
• For w ∈ Σ∗1 with w = a1 . . . an, f (w) = f (a1) . . . f (an).
• For L ⊆ Σ∗1 , f (L) = { f (w) | w ∈ L }

Theorem:
Regularity of Projections

If L ⊆ Σ1 is regular, so is
the projection f (L).

10

This translation yields an automaton with at most 22·
··

2
}
|ϕ| states. The reason for that being that

computing the complement of an automaton may require determinization of it first. There is no

translation that is bounded by a tower of the form 22·
··

2|ϕ|
}

k for a fixed k.

5.2.3 Consequences of the equivalence theorem

Theorem: Reduction of MSO to EMSO

For every MSO formula ϕ on words, there
is an existential MSO (EMSO) formula

ψ = ∃X1 ∃X2 . . . ∃Xnϑ

with an FO formula ϑ such that ψ is equiv-
alent to ϕ.

Proof. Given a formula ϕ, construct the automa-
ton A that accepts the language defined by ϕ.
Then translate it back into an MSO formula.
This construction yields an existential MSO for-
mula.

Theorem: Satisfiability and Equivalence of MSO Formulae

Satisfiability and equivalence of MSO formulae over words is decidable.

Proof. The corresponding properties (non-emptiness and equality of accepted languages) on the
corresponding automata are decidable.

5.3 FO Definability

Now, we will look at FO formulae. The important difference to MSO formulae is that modulo
counting is not possible in FO.

In the following we will characterise FO-definable languages by different equivalent conditions.

Theorem: Characterisation of FO-definable Languages

Let L be a regular language. The following conditions are equivalent:
• L is FO-definable.
• L is non-counting. (??)
• The syntactic monoid of L is aperiodic (group-free). (??)
• L is definable by a star-free expression. (??)
• L is definable in linear temporal logic (LTL). (??)

11

5.3.1 Counting Languages

Definition: Counting Languages

A language L is called counting if there are u, v ∈ Σ∗, such that for all n ≥ 1: uvn �L uvn+1

Correspondingly L is called non-counting if for all u, v ∈ Σ∗ there is n ≥ 1: uvn ∼L uvn+1

The counting condition exactly defines the difference between FO-definable and MSO-definable
formulae.

5.3.2 Language Recognition by Monoids

A DFA defines a function from finite words to
states: δ∗ : Σ∗ → Q. This computation of δ∗(wa)
is based on the computation of δ∗(w) and a. The
function δ∗ is not compositional: δ∗(ww′) cannot
be computed from δ∗(w) and δ∗(w′). Thus we
introduce the language accepted by monoids,
which can be seen as a form of automata with
fully compositional behaviour.

Let M = (M, ·, 1) be a monoid, P ⊆ M, and
h : Σ∗ → M be a homomorphism from the free
monoid ((Σ∗, ·, ε)) intoM.

The language L(M, P, h) is the set of all words
that are mapped to P under h, that is

L(M, P, h) = {w ∈ Σ∗ | h(w) ∈ P}

We say that L can be recognised by M if there
exists P and h such that L = L(M, P, h).

Definition: Monoids

A monoid is an algebraic structure (M, ·, 1)
with
• an associative operation · : M×M→ M

∀x, y, z ∈ M : (x · y) · z = x · (y · z)

• a neutral element 1 ∈ M

∀x ∈ M : 1 · x = x · 1 = x

Definition: Homomorphisms

LetM = (M, ·M, 1M) and N = (N, ·N , 1N)

be monoids.

A monoid homomorphism is a mapping h :
M→ N such that

1. ∀x, y ∈ M : h(x ·M y) = h(x) ·N h(y)
2. h(1M) = 1N

Theorem: Monoid Recognisability and Regularity

A language L is regular iff it can be recognised by a finite monoid.

Monoids→ Automata

Let L = L(M, P, h) withM = (M, ·, 1). View M
as the states of an automaton, P as final states,
the neutral element 1 as the initial state and use h
and · to define the transitions: δ(m, a) = m · h(a),
where a ∈ Σ and m ∈ M.

For the resulting DFA A = (M, Σ, 1, δ, P) we
have δ∗(w) = h(w) and thus L(A) = L(M, P, h).

Automata→ Monoids

Definition: Transition Monoid

Let A = (Q, Σ, q0, δ, F) be a DFA for L.
Then the transition monoid is M(A) =

(
{

uA
∣∣ u ∈ Σ∗

}
, ◦, idQ).

For u ∈ Σ∗, the transformation on Q by u is
uA : Q→ Q, uA(q) 7→ δ∗(q, u).

12

Theorem: Syntactic Monoid vs. Transition Monoid

The syntactic monoidM(L) is isomorphic to the transition monoidM(AL) of the minimal
DFA AL for L. It is the (unique) smallest monoid that can recognise L.

We can also define a monoid for a language with-
out reference to automata, using the syntactic
congruence ≈L: Let L ⊆ Σ∗ and u, v ∈ Σ∗. Then
u ≈L v iff ∀x, y ∈ Σ∗ : xuy ∈ L⇔ xvy ∈ L

Because of the isomorphism [u]≈L 7→ uAL , we
also knowM(L) can be computed from an au-
tomaton for the language L.

Definition: Syntactic Monoid

The syntactic monoid M(L) is M(L) =

(Σ∗/≈L
, ·, [ε]≈L), where

Σ∗/≈L
= {[u]≈L | u ∈ Σ∗}

[u]≈L · [v]≈L = [uv]≈L

Definition: Group-free Monoids

A monoid (M, ·, 1) is called group-free if there is no subset G of M with |G| ≥ 2 and 1G ∈ G
such that (G, ·, 1G) forms a group.

5.3.3 Star-free Expressions

The star-free expressions over Σ are generalised
regular expressions without the Kleene star.

For such an expression r let L(r) be the language
defined by r. A language is called star-free if it
can be defined by a star-free expression.

Each star-free language L ⊆ Σ+ is FO-definable:
One can inductively give a formula ϕr(x, y) for
each star-free expression r such that w |= ϕr(a, b)
iff the subword from a to b of w is in the language
defined by r.

Definition: Star-free Expression Syntax

Atomic expressions

∅, ε and
letters of Σ

Operators

+ · ∩ ∼
choice sequence intersection complement

The inductive translation goes as following:

Star-free expression r FO formula ϕr(x, y)

a Pa(x) ∧ x = y

∅ or ε false

s + t ϕs(x, y) ∨ ϕt(x, y)

s ∩ t ϕs(x, y) ∧ ϕt(x, y)

∼ s ¬ϕs(x, y)

s · t ∃z∃z′(x ≤ z ∧ S(z, z′) ∧ z′ ≤ y ∧ ϕs(x, z) ∧ ϕt(z′, y))
(∨ϕs(x, y)[if ε ∈ L(t)]) (∨ϕt(x, y)[if ε ∈ L(s)])

13

5.3.4 LTL-definability

Linear temporal logic (LTL) is a logic that allows
referring to “time”. Here, we imagine characters
of a word w ∈ Σ+ being read in time, so the
“next time” will refer to the state where the next
character is read.

• w |= > always.
• w |= Pa iff w = av, v ∈ Σ∗.
• w |= Xϕ iff w = av for a ∈ Σ, v ∈ Σ+ and

v |= ϕ.
• w |= ϕUψ iff w = a1 . . . anv, ai ∈ Σ, v ∈ Σ+

with v |= ψ and for all 1 ≤ i ≤ n, ai . . . anv |=
ϕ.

Definition: Syntax of LTL

Atomic Propositions

> and Pa for a ∈ Σ

Logical Operators

∧, ∨, ¬,→,↔
Temporal Modal Operators

ϕ U ψ, X ϕ

until next

Shorthands

F ϕ := 1 U ϕ (finally),
G ϕ := ¬F ¬ϕ (globally)

A language L is LTL-definable if there is an LTL formula ϕ such that L = L(ϕ) := { w ∈ Σ+ | w |= ϕ }.
Every LTL-definable language is also FO-definable, as there is a simple translation of LTL operators
to FO.

6 Automata for Finite Trees

6.1 Ranked Tree Automata

Definition: Ranked Alphabet

A ranked alphabet Σ is a finite alphabet
where for each a ∈ Σ a finite set rk(a) ⊆N

of arities is fixed.

Σi = { a ∈ Σ | i ∈ rk(a) }
Σ = Σ0 ∪ . . . ∪ Σm

Tree automata are a generalisation of word au-
tomata. They recognise trees over ranked alpha-
bets (or unranked alphabets, see below).

We have two definitions for trees: The definition
by induction and the labelled trees definition.
They are equivalent, and either is used when
convenient.

A subset T ⊆ TΣ is a tree language over Σ.

Definition: Tree over Σ

Definition by induction:
The set of Σ-trees is defined inductively by:
• each a ∈ Σ0 is a Σ-tree
• a(t1, . . . , ti) is a Σ-tree where

t1, . . . , ti are Σ-trees and a ∈ Σi

Labeled trees definition:
Σ-labeled tree is t = (domt, valt) with
• domt ⊆ (N+)∗ such that

– if wv ∈ domt, then w ∈ domt

– if w.i ∈ domt for i ∈ N+, then
w.j ∈ domt for all 1 ≤ j < i

• labels valt : domt → Σ such that
– For valt(w) = a, a ∈ Σn such

that w has n successors in domt

(w.i ∈ domt iff 1 ≤ i < n).

The ith successor of a node u is u.i or ui.

A simple usage of the inductive definition is yield(t), the word obtained by reading leaf labels from

14

left to right in the tree t: yield(a) = a for a ∈ Σ0, yield(a(t1, . . . , ti)) = yield(t1) · · · yield(ti)

for a ∈ Σi.

A deterministic tree automaton (DTA) over the
ranked alphabet Σ is the simple extension of
a DFA for trees.

The automaton evaluates trees from bottom to
top, basically folding subtrees into states catamorphism.
A DTA accepts an input tree if the state reached
at the tree root is a final state.

A tree language T is regular if there is a DTA A
with T = L(A).

Definition: Deterministic Tree Automaton

A DTA over Σ = Σ0 ∪ . . . ∪ Σm is of the
form A = (Q, Σ, δ, F) with
• finite state set Q,
• final state set F ⊆ Q,
• transition function

δ :
⋃m

i=0(Q
i × Σi)→ Q.

An important result is that the derivation tree of a context-free grammar is regular, although not all
regular tree languages can be represented as a CFG.

The class of regular tree languages is closed under complement, union, and intersection.

A nondeterministic tree automaton (NTA) is the ob-
vious extension of DTAs with nondeterminism.

We define a run of A on t as a mapping
ρ : domt → Q, such that

• for each leaf u: (valt(u), ρ(u)) ∈ ∆,
• for each u with successors:
(ρ(u.1), . . . , ρ(u.i), valt(u), ρ(u)) ∈ ∆.

Definition: Nondeterministic Tree Automaton

An NTA is of the form A = (Q, Σ, ∆, F)
like a DTA but with ∆ ⊆ ⋃m

i=0(Q
i × Σi ×

Q)

A accepts t if there is a run ρ of A with ρ(ε) ∈ F.

One can construct a DTA A′ from a NTA A with T(A) = T(A′) by using the classical subset
construction.

We can compute the set of reachable states for a
NTA in polynomial time.

By computing the the set R of reachable states,
we can decide the emptiness problem for NTAs.
Depending on whether there are final states in
R, the NTA is empty: T(A) = ∅ iff R ∩ F = ∅

Algorithm: NTA Reachability

Input: NTA A = (Q, Σ, ∆, F).

Output: Set of reachable states R.

1. R := {q ∈ Q | ∃a ∈ Σ0 : (a, q) ∈ ∆}
2. Repeat until no new states are added:
• For each (q1, . . . , qi, a, q) ∈ ∆

– If q1, . . . , qi ∈ R, then add q to R.

6.1.1 Myhill-Nerode and Minimisation

To minimise DTAs, we want to generalise Myhill-Nerode equivalence to trees. However, while
words have a notion of concatenation to represent what comes after the part of the word already
read, the same is not true for trees.

15

To fix this problem, we introduce contexts or special trees: Trees that have a hole ◦ in place of one
leaf. The set of these is called SΣ.

The concatenation t1 · t2 of such trees inserts t2 in place of the leaf of t1.

Then we can define Myhill-Nerode equivalence on tree automata as follows:

t1 ∼T t2 ⇐⇒ ∀ s ∈ SΣ (s · t1 ∈ T ⇐⇒ s · t2 ∈ T)

The number of ∼T-equivalence classes is called the index of T. T is regular iff its index is finite.

As in the word-case, we can use this equivalence to minimise DTA. Unlike the word case, unreachable
states have to be purged first to avoid them influencing refinement.

In the refinement step, we separate p from p′ if there are previously separated states q and q′, a
letter a ∈ Σn, and a sequence p1, . . . , pi−1, pi+1, . . . , pn such that δ(p1, . . . , pi−1, p, pi+1, . . . pn, a) = q
and δ(p1, . . . , pi−1, p′, pi+1, . . . , pn, a) = q′. Initially separate all pairs (q, q′) with (q ∈ F ⇔ q′ /∈ F).

6.2 Unranked Tree Automata

Unranked tree automata accept unranked trees.

A nondeterministic bottom-up automaton for un-
ranked trees (NUTA) has a state set Q, a transition
relation ∆ and a set of final states F.

Since the number of successors of a node is un-
bounded, one specifies transitions by giving a
regular language of state-sequences for the suc-
cessors instead.

Definition: NUTA

A NUTA over Σ is of the form (Q, Σ, ∆, F):
• state set Q,
• transitions ∆ ⊆ Reg(Q)× Σ×Q,
• final states F ⊆ Q.

Reg(Q) is the set of regular word lan-
guages over Q.

Definition: Unranked Trees

Definition by induction:
The set TΣ of unranked trees over Σ is de-
fined inductively by:
• Each a ∈ Σ is a Σ-tree
• a(t1 · · · tn) is a Σ-tree for a ∈ Σ and

Σ-trees t1, . . . , tn.

Labelled trees definition:
Σ-labelled tree is t = (domt, valt) with
• domt ⊆N∗+ such that

– if wv ∈ domt then w ∈ domt

– if w.n ∈ domt for n ∈ N+ then
w.i ∈ domt for all 1 ≤ i < n

• labels valt : domt → Σ

The ith successor of a node u is u.i or ui.

Definition: Runs and Languages of NUTAs

A run of a NUTA A = (Q, Σ, ∆, F) on a tree t = (domt, valt) is a mapping ρ : domt → Q such
that
• For each node u ∈ domt with i successors, there is a transition (L, valt(u), ρ(u)) with

ρ(u.1) · · · ρ(u.i) ∈ L.
• For each leaf u, there is a transition rule (L, valt(u), ρ(u)) with ε ∈ L.

A run ρ is accepting if ρ(ε) ∈ F.

The set T(A) is the set of trees t such that there is an accepting run of A on t.

A language T ⊆ TΣ is regular if there is a NUTA that accepts it.

16

We call a NUTA normalised if for each a ∈ Σ and q ∈ Q there is a unique transition (L, a, q). Each
NUTA can be trivially normalised, since regular languages with ∅ and ∪ form a monoid.

We further call a NUTA deterministic (also abbreviated as DUTA), if for each two transitions (L1, a, q1),
(L2, a, q2) either q1 = q2 or L1 ∩ L2 = ∅.

We use the subset construction. From a normalised NUTA A, we build a DUTA (2Q, Σ, ∆′, F′).
∆′ = { (Ka,P, a, P) | a ∈ Σ, P ⊆ Q } where P1 . . . Pn ∈ Ka,P iff the states reachable in A from a
selection of states of P1 . . . Pn are exactly the states in P. F′ = { P ⊆ Q | P ∩ F 6= ∅ }.

6.3 First-Child-Next-Sibling (FCNS)

We can encode unranked trees in First-Child-Next-Sibling (FCNS) encoding. A tree simply becomes
a binary tree where each node has a choice: Either go to a child, or go to the next sibling.

Formally, we define the FCNS with the ranked alphabet Γ = Γ0 ∪ Γ2 with Γ0 = { # } and Γ2 = Σ.

fcns(t1 . . . tn) :=

{
if n = 0

a (fcns(t′1 . . . t′m), fcns(t2 . . . tn)) otherwise

where t1 = a(t′1 . . . t′m) if n ≥ 1

We also define fcns(T) = { fcns(t) | t ∈ T }

One can also prove that T ⊆ TΣ is regular iff fcns(T) is regular. The translation between a NUTA
for T and an NTA for fcns(T) is polynomial.

The emptiness problem and the membership problem for NUTAs are both decidable in polynomial
time. The inclusion problem for NUTAs is decidable in exponential time and the inclusion problem
for complete DUTAs is decidable in polynomial time.

6.4 Logic on Trees

Definition: Logic on Ranked Trees

Logic on ranked trees over an alphabet Σ = Σ0 ∪ . . . ∪ Σn uses a signature with a unary
relation Pa for each a ∈ Σ and binary relations S1, . . . , Sn.

Then Pa(x) represents “at x, the symbol is a” and Si(x, y) represents “y is the i-th successor of
x”.

From these, one can additionaly define shorthands S(x, y) for “x is the parent of y” and x v y
for “x is an ancestor of y”.

A tree t = (domt, valt) is then represented as a structure A with A = domt,
PA

a = { x ∈ domt | valt(x) = a }, SA
i = { v.i | v ∈N∗, v.i ∈ domt }.

As in the word-case, the set of MSO-definable tree languages is the same as the set of regular tree
languages (the construction is largely analogous).

The set of FO-definable tree languages is however not yet characterised.

17

Definition: Logic on Unranked Trees

For unranked trees, instead of using an infinite signature containing all possible Si for i ∈N,
in addition to the Pa, S and v, one introduces a symbol <, where x < y means “x and y have
the same parent and x occurs to the left of y”.

In this case we have yet another equivalence theorem (MSO-definable = regular).

7 Algorithms for Pushdown Systems

A pushdown system (PDS) has two kinds of mem-
ory: A state from P, and a stack consisting of
elements from the stack alphabet Γ.

Each transition is a four-tuple of (p, a, v, q). p
is the current state and a the current topmost
element of the stack. v is the word to be pushed
onto the stack (arbitrarily many characters at
once). Lastly, q is the next state. We also write a
transition as pa→ qv.

A valid step is denoted pw ` p′w′ with
w = aw0, w′ = vw0 and pa→ p′v ∈ ∆.

Multiple steps are denoted pw `i p′w′ with the
obvious requirements.

The configuration graph represents the graph of
configurations reachable by valid steps.

Definition: Pushdown System (PDS)

A PDS is of the form P = (P, Γ, ∆) with
• state set P,
• stack alphabet Γ, and
• finite transition relation

∆ ⊆ (P × Γ × Γ∗ × P) with rules
(p, a, v, q), also written as pa→ qv.

A configuration is a pair (state, stack con-
tent). We abbreviate (q, u) as qu.

Definition: Configuration Graph

The configuration graph GP of P = (P, Γ, ∆)
has
• { c | c ∈ PΓ∗ } as set of vertices.
• { (c1, c2) | c1 ` c2 } as set of edges.

7.1 Reachability Analysis

We study the general reachability problem: Given a pushdown system P , an initial configuration
c1, and a regular set C ⊆ PΓ∗ of target configurations, we want to decide whether there exists a
configuration c2 ∈ C that is reachable from c1.

For a PDS, the P-automaton is an NFA where the
states P of the pushdown system are the initial
states in the automaton. A P-automaton can
accept a configuration pw if, starting from state
p, w is accepted.

A P-automaton is normalised if states from P have
no incoming transitions.

Definition: P-Automaton

For a PDS P , a P-automaton is an
NFA A = (Q, Γ, P, ∆A, F) with P ⊆
Q. It accepts configurations C(A) =

{ pw | w is accepted from p }.

18

We solve the general reachability problem given
P , c1, C as follows:

The solution has three steps and everything
works out in polynomial time.

1. Construct the normalised P-automaton A
that accepts C.

2. Compute Apre∗ for A with the saturation
algorithm.

3. Iff c1 is accepted by Apre∗, then c1 `∗ c2 for
some c2 ∈ C C(Apre∗) = pre∗P (C(A))

Since the general reachability problem is decid-
able, so is the simple reachability problem (where
C = { c2 }).

Definition: pre∗P

For a set of configurations C of a
pushdown system P : pre∗P (C) =

{ c ∈ PΓ∗ | ∃ c′ ∈ C c `∗ c′ }

Algorithm: Saturation Algorithm

Input: PDS P = (P, Γ, ∆) and
a normalised P-automaton A.

Output: Apre*.

1. If pa→ p′v ∈ ∆ and A : p′ v→ q,
• add (p, a, q) to A.

2. Repeat 1 until A is not changed.

This also implies reachability problems for sequential programs with recursion over finite domains
are decidable.

The saturation algorithm always terminates in polynomial time as no states are added at any point
and at most |P× Γ×Q| transitions can be added. For each transition added, we need to, at most,
iterate over all transition rules of the PDS.

One can also go the other way and compute post∗P (C) = { c ∈ PΓ∗ | ∃ c′ ∈ C c′ `∗ c }. The algorithm
for this is not discussed in the lecture.

7.2 PDS with Several Stacks

To model concurrency, one can use PDS with multiple stacks.

Definition: n-pushdown System

An n-PDS has a transition relation ∆ ⊆ Q× { 1, . . . , n } × Γ× Γ∗ ×Q.

Configurations are of the form (p, w1, . . . , wn) with p ∈ Q, wi ∈ Γ∗.

Transitions are as follows:

(p, w1, . . . , wi−1, aw, wi+1, . . . , wn) ` (q, w1, . . . , wi−1, vw, wi+1, . . . , wn)

if a transition rule (p, i, a, v, q) exists.

An n-PDS is deterministic if for each state q there is a unique i ∈ { 1, . . . , n } such that all
transitions from q modify stack i and for each symbol on the top of the stack, there is at most
one applicable transition rule.

One can simulate a Turing machine with a deterministic 2-PDS by having the two stacks hold the
contents of the tape to the left/right of the reading head (with the top of the stack being the side
close to the reading head).

Thus the simple reachability problem for 2-PDS is undecidable (by reduction from the halting
problem).

19

8 Register Machines and Communicating Automata

Definition: n-register Machine

An n-register machine is a program using variables X1 . . . , Xn for natural numbers and the
instruction set
• INC Xi
• DEC Xi
• IF Xi = 0 GOTO `

• GOTO `

where ` is a line number of the program.

An n-register machine can be simulated by an n-PDS where the height of stack i encodes the
contents of register i and the state holds the current line number.

Thus the simple reachability problem for 1-register machines is decidable.

The simple reachability problem for 2-register machines is however undecidable:

Proof. One can reduce the simple reachability problem for n-register machines to that for 2-register
machines and the simple reachability problem for n-PDS to that for n + 1-register machines, as
illustrated below.

n-PDS→ n + 1-register:

4
2
1

8
4
2

2 stacks

124 248 0
3 registers

Figure 1: From 2-PDS to 3-register

Each stack is encoded as a decimal number where the top element of the stack is represent by
the least significant digit. This way the top element can be easily identified using the modulo 10
operation. Its removal corresponds to a division by 10, pushing a number k to the stack corresponds
to multiplication by 10 followed by an addition of k. The n+ 1 register is needed since multiplication
and division require an auxiliary register. If the stack alphabet is different from {1, . . . , 9} a different
base is needed.

n-register→ 2-register:
The first register holds the encoding of the n registers of the original machine as a product of the
first n prime numbers, with the register values stored as their exponents:

4 3 2 1 0
5 registers

24 · 33 · 52 · 71 · 110 0
2 registers

Figure 2: From 5-register to 2-register

20

The second register is again just a helper register for multiplication, division and storing division
remainder. Checking whether register i ∈ [1 . . . n] is equal to 0 corresponds to dividing our encoding
by the ith prime number. If the division has a remainder the ith register value must have been 0.
Indeed the encoding in our example (24 · 33 · 52 · 71 · 110) is dividable by all prime numbers up to 7
but has a remainder of 1 when divided by 11.

8.1 Data Words

Definition: Data Words

A data word is a word w ∈ Σ∗, |w| = n together with data for each position, represented by a
function d : { 1, . . . , n } →N.

We extend logic to data-words in the following way:

In addition to the usual parts of FO/MSO over words, we add relations

• d(x) = 0
• d(x) = d(y), d(x) < d(y), d(x) ≤ d(y)
• d(x) = d(y) + 1

for terms x, y.

Satisfiability for FO-sentences modulo data-words (given a sentence ϕ, does there exist a data-word
w, d satisfying it?) is undecidable.

Proof. We can construct an FO-sentence describing valid, terminating computations of a 2-register
machine. Thus we reduce the halting problem of 2-register machines to the satisfiability of FO-
sentences over data-words.

This construction uses as an alphabet the line numbers of the register machine’s program, together
with a padding symbol #. A word describes the sequence of line numbers in the order they were
visited with # following each line number. Pairs of data cells represent the two register values:

1 # j1 # j2 # . . .linenumber

0 0 m1 n1 m2 n2 . . .registers

Figure 3: Potentially valid data-word for a 2-register machine

Our conjunction of FO-formulas asserts that we are initially in line 1 and both registers are equal
to 0. Furthermore the word contains the line number of the stop-instruction at some point. The
register machine’s instructions are translated to FO-formula so that line numbers and register values
of the data word change as expected from the simulated instructions: We are axiomatizing valid
computations/runs of the given register machine.

21

9 Communication via FIFO Channels

In an attempt to model communicating pro-
cesses, we introduce the notion of message pass-
ing automata, wherein multiple automata can
communicate messages of a finite alphabet via
queues.

However, this model is too powerful to be effec-
tively analysed: The simple reachability problem
for message passing automata is undecidable
even when restricted to a single automaton with
a queue to itself.

Proof. One can simulate the run of a turing ma-
chine, using the queue to hold the contents of
the tape.

Definition: Message Passing Automaton

A message passing automaton is a structure
(CN, Γ,A1, . . . ,An) with
• set of channels CN ⊆ { 1, . . . , n }2

(i, j) is the channel Ai writes and Aj reads from

• message alphabet Γ
• automata Ai = (Qi, Σi, q0i, ∆i, Fi) with

transitions of the form
– (p, a, q) with p, q ∈ Qi, a ∈ Σi
– (p, m!j, q) with p, q ∈ Qi, m ∈ Γ and
(i, j) ∈ CN
(Write m to channel (i, j))
Automata write from the left.

– (p, m?j, q) with p, q ∈ Qi, m ∈ Γ and
(j, i) ∈ CN
(If m is the first letter of channel (j, i),
remove it and go to state q)
Automata read from the right.

Configurations for message passing au-
tomata contain the states of each automa-
ton as well as the contents of each channel.

22

	Introduction
	Notation and Automata
	Minimisation of NFAs
	Quotient Automaton
	Quotient on DFAs

	Reduction of NFAs
	Bisimulation
	Block Refinement
	Comparison of Reductions

	Learning Algorithms for DFAs
	Passive: Construction of Finite Automata from Examples
	Regular Positive Negative Inference (RPNI)
	Active Learning with L*

	Automata and Logic
	MSO Logic on Words
	The Equivalence Theorem
	From Automata to Formulae
	From Formulae to Automata
	Consequences of the equivalence theorem

	FO Definability
	Counting Languages
	Language Recognition by Monoids
	Star-free Expressions
	LTL-definability

	Automata for Finite Trees
	Ranked Tree Automata
	Myhill-Nerode and Minimisation

	Unranked Tree Automata
	First-Child-Next-Sibling (FCNS)
	Logic on Trees

	Algorithms for Pushdown Systems
	Reachability Analysis
	PDS with Several Stacks

	Register Machines and Communicating Automata
	Data Words

	Communication via FIFO Channels

