
panikzettel.htwr-aachen.de

Introduction to Artificial Intelligence Panikzettel
Philipp Schröer, Der Dude, Luca Oeljeklaus, Dan Tuong Le

Version 1 — 09.05.2025

Contents

1 Introduction 2

2 Agent Architectures 2
2.1 Agent Types . 2
2.2 Environment Properties . 3

3 Search 3
3.1 Search Problems . 3
3.2 Search Strategies . 4

3.2.1 Uninformed Search Strategies . 4
3.2.2 Informed Search Strategies . 4

4 Games 6

5 Knowledge Representation 7
5.1 First-order Logic . 7

5.1.1 Alphabet . 7
5.1.2 Grammar . 7
5.1.3 Notation . 7
5.1.4 Semantics . 7

5.2 Knowledge-Based Systems . 8

6 Resolution 8
6.1 Clausal Form . 8
6.2 CNF for First-order Logic . 9
6.3 The Rules of Resolution . 9
6.4 Most General Unifier (MGU) . 10

7 Planning 10
7.1 STRIPS Operator . 10
7.2 Plans . 11

8 Uncertainty 12
8.1 Probability Theory . 12

1

https://panikzettel.htwr-aachen.de

8.2 Belief Networks . 12
8.3 d-Separation . 13

9 Learning 13
9.1 Kinds of Feedback during Learning . 13
9.2 Decision Lists . 14
9.3 Decision Trees . 14
9.4 Neural Networks . 16

9.4.1 Network Topologies . 16
9.4.2 Neural Network Learning . 16

1 Introduction

This Panikzettel is about the lecture Introduction to Artificial Intelligence by Prof. Lakemeyer held
in the winter semester 2017/18.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

2 Agent Architectures

2.1 Agent Types

An agent has effectors to influence its environment, based on percepts that are perceived through
the agent’s sensors. A rational agent acts according to some performance criteria. Rational action
depends on the performance measure, the percept sequence, world knowledge and possible actions.

If you’re the acronym type, you can remember this as PAGE: percepts, actions, goals, environment.

A table-lookup agent has a mapping indexed by percept sequences. Each action is just an entry in
that table.

A reflexive agent has a set of condition-action rules that are pattern matched against a percept.
Additionally, a reflexive agent with an internal world model may have a state machine as memory.

Goal-oriented agents try to fulfil (binary) goals by imagining the outcome of actions. Utility-based
agents have a utility function that judges the expected outcomes of different actions somehow. This
allows more flexibility, especially with uncertainty or conflicting goals.

Learning agents have a learning element that improves the system by changing and retrieving knowl-
edge from the performance element (agent in the old sense, handles effectors). The critic judges
sensor data and gives feedback to the learning element. Additionally, there’s a problem generator
that suggests actions to test performance of the performance element.

2

https://git.rwth-aachen.de/philipp.schroer/panikzettel

2.2 Environment Properties

• accessible (as opposed to nonaccessible):
All relevant aspects of the world are available to the sensors.

• deterministic (as opposed to nondeterministic/stochastic):
The next state depends completely on the current state and chosen action.

• episodic (as opposed to nonepisodic):
The choice of an action depends only on the current state (not on the past).

• static (as opposed to dynamic):
The world does not change while deciding on an action.

• discrete (as opposed to continuous):
There are only finitely many world states in a range.

3 Search

3.1 Search Problems

This section is concerned with goal-oriented
agents. Given an initial state of the world, an
agent searches through a state space, where world
states are connected by actions of the agent. The
agent tries to find a sequence of actions leading
to a world state that satisfies a goal (goal test).

The connections of states are given by the op-
erator: It gives a description of which state is
reached by an action from a given state. The
successor function S(x) returns the set of states
reachable by any action from state x.

A sequence of actions is called a path. Paths have
a past cost. A solution is a path from the initial
state to a state that satisifies the goal test.

Finding a solution may have a search cost. The
total cost also includes the path cost to the solu-
tion.

Definition: State space

• Set of states
• Set of operators
• Goal test function
• Path cost function
• Search cost function

Definition: Search problem

Starting at an initial state, search the state
space to find a path to a goal state.

States are expanded during search to cre-
ate successor states. This search induces a
search tree.

There are varying degrees of difficulty for state space search problems.

World knowledge Action knowledge
Single-state problem complete complete

Multiple-state problem incomplete complete
Contingency problem to be found at run-time incomplete
Exploration problem unknown unknown

3

3.2 Search Strategies

Search strategies can be evaluated by a few metrics:

• Completeness: Always finds a solution if it exists.
• Time complexity: Worst case search time.
• Space complexity: Worst case memory usage.
• Optimality: Always finds the best solution, not just a solution.

An uninformed (blind) search does not use any information about the length or cost of a solution. An
informed (heuristic) search does have some information.

In the following, b will be the maximum branching factor and d the depth of a solution.

3.2.1 Uninformed Search Strategies

Breadth-first search (BFS) expands nodes in the order they are generated.

Uniform cost search is a modified BFS that expands nodes with the least path cost first.

Depth-first search (DFS) always expands the node at the deepest level.

Depth-limited search is a DFS that only expands up to a specified depth.

Iterative deepening combines BFS and DFS. It executes depth-limited search at increasing depths until
a solution is found.

If forward and backward searches are symmetric, then bidirectional search is possible.

Criterion BFS Uniform-Cost DFS Depth-Limited Iterative Deepening Bidirectional
Complete? Yes Yes Yes No Yes Yes

Time O(bd+1) O(b1+⌊C⋆/ε⌋ O(bm) O(bℓ) O(bd) O(bd/2)

Space O(bd+1) O(b1+⌊C⋆/ε⌋ O(bm) O(bℓ) O(bd) O(bd/2)
Optimal? No Yes (pos. costs) No No No No

These properties hold with regard to finite graph assuming the algorithm tests for cycles and with
b being the maximal branching factor, d the minimal depth of a goal state, m the maximal search
depth, ℓ the depth restriction, C⋆ the cost of the optimal path and ε the minimum step cost.

3.2.2 Informed Search Strategies

Informed search strategies use an evaluation function f that returns the cost to the goal from a given
node.

Best-first Search always expands the node with the best f -value.

Greedy search always chooses the node with the minimal (expected) cost to the goal state.

A∗ search combines uniform cost search with greedy search.

• g(n) = actual cost from initial state to n.
• h(n) = estimated cost from n to the nearest goal.
• f (n) = g(n) + h(n), the estimated cost of the cheapest path through n.

The heuristic h used for A∗ must be admissible, that is h(n) ≤ h∗(n) must hold where h∗(n) is the
cost of an optimal path from n to the nearest goal.

4

To compare the quality of admissible heuristics we introduce the effective branching factor b∗. If an
instance of A∗ generates N nodes and the solution depth is d then b∗ is the solution of:

N + 1 = 1 + (b∗)1 + · · ·+ (b∗)d

E.g. a tree of depth d and branching factor b∗ would contain the same number of nodes as the tree
generated during the search.

Iterative Deepening A∗ is a variant of Iterative Deepening search that explores branches up to a given
threshold for the value of f (n). If this threshold is passed and no solution was found the threshold
is set to the minimal value of f (n) for all found nodes n that exceeded the threshold.

Simplified Memory-Bounded A∗ uses a bounded priority queue. New nodes are added to the queue.
Each time a node is added, the algorithm checks whether all sibling nodes are in the queue, then
the parent is removed. If the memory is full, the node with the highest cost is removed from the
queue and its parent is added (if not already present).

Hill Climbing simply iteratively expands the highest-valued successor of the current node.

Simulated Annealing uses a temperature that decreases with time. In each iteration, a random successor
is chosen. If the successor has a higher value, then the next iteration starts with this node, otherwise
only with probability e∆E/T where ∆E is the value difference and T is the temperature (iteration
count). Otherwise the iteration restarts with the old node.

5

4 Games

Games are special cases of search problems. States are usually accessible. Actions are possible moves
by a player.

From a player’s point of view, there may be uncertain outcomes of actions, so games are contingency
problems.

We will look at 2-person games. The players are called MIN and MAX. MAX moves first. Operators
are legal moves.

MAX needs to find a path which leads to a winning state for every possible reaction of MIN.

Algorithm: Minimax

1. Generate complete game tree.
2. Apply utility function to terminal states.
3. Recursively calculate values for parent nodes, starting from the terminal states:

• If parent is at MIN level, assign minimum of values of children.
• If parent is at MAX level, assign maximum of values of children.

Alpha-Beta search cuts off the search using
two variables in each path it traverses.

α is the best score for MAX along the path,
while β is the best score for MIN.

As an explanation, let us consider the ex-
ample on the next page. We let circles
stand for MAX, squares for MIN, and num-
bers fur cutoff levels.

Let it be noted that we will be performing
left-to-right Alpha Beta Search, and that
dashed edges represent those that we do
not visit.

Algorithm: Alpha Beta Search

Initially: alphaBeta(initialState, −∞, ∞).

function alphaBeta(state, α, β):

1. If this is a cutoff state, return this node.
2. For each successor s:

• If s is at MAX level:
a) Set α to max(α, alphaBeta(s, α, β)).
b) If α ≥ β, return β.

• If s is at MIN level:
a) Set β to min(β, alphaBeta(s, α, β)).
b) If β ≤ α, return α.

3. Return α (MAX level) or β (MIN level).

• We initialise [α, β] = [−∞,+∞]A in A.
• We move to B and update to [−∞, 2]B, since

2 ≤ +∞.
• We move to D and look at 4. As 4 ≥ 2, going

there is already worse than just going to 2 for
B, so we go back up without even looking at
5.

• From B, we move back to A. Since the best
move B can make leads to 2, we have a lower
limit on how bad it can get for A. Thus, we
set [2,+∞]A.

A

[−∞,+∞]
B−→ [2,+∞]

C−→ [2,+∞]

B
[−∞,+∞]

2−→ [−∞, 2]
D−→ [−∞, 2]

C [2,+∞]
1−→ [2, 1]

2
D[−∞, 2] 4−→ [4, 2]

4 5

1
9

• We then move down to C, from where we look at 1. As 1 ≤ 2, this is worse than going to B. Thus
we don’t visit 9, as it doesn’t matter how good or bad it is.

6

5 Knowledge Representation

In a rational agent the world must be explicitly represented as a knowledge base that contains
sentences in a formal language.

Knowledge representation can be distinguished on three different levels:

• Knowledge Level: What is known by the knowledge base.
• Symbolic Level: The encoding of the knowledge base in a formal language.
• Implementation Level: Internal representation of sentences, like lists or strings of things.

5.1 First-order Logic

For more detail, refer to our Mathematische Logik Panikzettel (German).

5.1.1 Alphabet

Logical Symbols Nonlogical Symbols
Delimiter Operators Variables Predicate Symbols Function Symbols

), (¬,∧,∨, ∃, ∀,= x, x1, y, z Friend, Enemy, etc. bestFriendOf, etc.

5.1.2 Grammar

Terms
• Every variable,
• f (t1, . . . , tn)

Atomic wffs
• P(t1, . . . , tn),
• t1 = t2

Formulas
• Every atomic wff,
• x, ¬α, (α ∧ β), (α ∨ β),
• ∃ x α, ∀ x α.

In the above α, β are wffs, and x is a variable.

Valid expressions consist of terms and (well-formed) formulas. Propositional Logic is a sub-language
of First-order Logic: It does not contain terms, nor variables nor quantifiers, but only atomic wffs.

5.1.3 Notation

Parentheses can be omitted.

As abbreviations, we have:

• α ⊃ β (“α implies β”) for ¬α ∨ β.
• α ≡ β (“α is equivalent to β”) for (α ⊃ β) ∧ (β ⊃ α).

A substitution α[x/t] is a replacement of all free occurrences of x by t in α.

5.1.4 Semantics

The semantics of a first-order formula is defined with respect to an interpretation I = ⟨D, Φ⟩ where D
is called the domain/universe of discourse and Φ is an interpretation function, i.e. for every predicate
symbol P/function symbol f Φ(P)/Φ(f) is the corresponding relation/function.

7

I||t|| denotes the element of the term t evaluated with respect to the interpretation I. For terms
with free variables we write I, ν||t|| where v is a function mapping variable names to elements of D.

Definition: First-order Logic semantics

Then the semantics of first-order logic is defined inductively by (for interpretation I = ⟨D, Φ⟩):
• I, ν |= P(t1, . . . , tn) iff ⟨d1, . . . , dn) ∈ Φ(P) and di = I, ν||ti||.
• I, ν |= (t1 = t2) iff I, ν||t1|| equals I, ν||t2||.
• I, ν |= ¬α iff I, ν ̸|= α.
• I, ν |= (α ∧ β) iff I, ν |= a and I, ν |= β.
• I, ν |= (α ∨ β) iff I, ν |= a or I, ν |= β.
• I, ν |= ∃xα iff it exists one d ∈ D such that νx

d |= α where νx
d is like ν except that νx

d (x) = d.

We also introduce the logical consequence which is similar to the implication but defined on the level
of semantics and not syntax (S is a set of sentences and α a sentence):

S |= α iff every interpretation satisfying every sentence in S also satisfies α.

5.2 Knowledge-Based Systems

We start with a knowledge base (KB) that represents our knowledge of the world. The system needs
to generate implicit knowledge that is a consequence of its KB. Therefore we need to be able to infer
sentences using inference methods.

Deductive Inference is a process to compute the logical consequences of a KB, i.e. given a KB and a
sentence α we want to compute if KB |= α.

This process is correct if the computation is correct, e.g. if we compute KB |= α then KB |= α.

This process is complete if for every sentence α such that KB |= α we can also compute that KB |= α.

From Kurt Gödel we know that because there exists such a complete and correct process (resolution)
for first-order logic, first-order logic is only semi-decidable.

6 Resolution

6.1 Clausal Form

A formula φ in conjunctive normal form (CNF)
can be rewritten in clausal form by transforming
every clause of φ into the set of literals it contains.
The clausal form is the set of all those sets.

For readability we write [and] for set of literals
(clauses) and {, } for formulas. Furthermore we
write ∼ for the negation.

Furthermore we define [] (the empty clause) to be
false (∨ monoid identity) and the empty formula
{} to be true (∧ monoid identity).

Definition: Clausal Form

Given a formula φ in conjunctive normal
form, i.e.

φ = (φ1,1 ∨ . . . ∨ φ1,n) ∧ . . . ,

then φ is in clausal form if written as

{ [φ1,1, . . . , φ1,n], . . . } .

8

The clausal form of (a ∨ b) ∧ (b ∨ ¬c) ∧ d is {[a, b], [b,∼c], [d]}.

6.2 CNF for First-order Logic

Algorithm: Transformation to CNF

Input: Propositional wff.

Output: Formula in CNF.

1. Rename variables such that all different variables have unique names.
2. Eliminate ≡ and ⊃.
3. Move ∀’s and ∃’s to the left.
4. Eliminate ∃’s using skolemisation:

• For each ∃x φ, add new symbol a representing that x.
• For each ∀y z, add new function f such that all y are mapped to the corresponding z.

5. Distribute ∨ over ∧.
(At this point we have a formula in prenex normal form. We then transform the quantifier-free
part of the formula into CNF).

6. To obtain the clausal form we eliminate all ∀’s.

6.3 The Rules of Resolution
Definition: First-order Resolution Inference Rules

Propositional Resolution

From two clauses
{p} ∪ C1 and {∼p} ∪ C2,

we can infer the clause
C1 ∪ C2

which is called the resolvent of the input
clauses relative to p.

First-Order Resolution

To deal with variables and quantifiers we in-
troduce a function θ (unifier) which substitutes
variable names.

Then given two clauses
{I1} ∪ C1 and {∼I2} ∪ C2 with I1θ = I2θ,

we can infer
(C1 ∪ C2)θ.

If the empty clause [] is derivable from a formula in the resolution calculus, the formula is
unsatisfiable. This allows proving KB |= α by inferring the empty clause from (

∧
KB) ∧ ¬α.

To extract the answer of a query ∃x P(x) we can introduce an answer predicate A(x) which just
occurs in our query but not in the KB, i.e.

∃x P(x) to ∃x [P(x) ∧ A(x)]

Then instead of inferring the empty clause we try to infer the clause [A(y)] where y is the searched
value for x.

Skolemisation is not equivalence preserving but satisfiability preserving.

9

6.4 Most General Unifier (MGU)

A problem of using resolution may be to use unifiers θ that are not general enough. The Most
General Unifier (MGU) can be calculated using the following algorithm in exponential time. Every
unifier θ′ can be represented as a composition of the MGU and some other unifier.

Algorithm: Computing the MGU

Input: Set of literals { l1, . . . , ln }.

Output: MGU θ.

1. Initialise θ = ∅.
2. If all literals are unified θ (all liθ are identical), then success. Return θ.
3. Find a disagreement set DS of (sub-)formulas which are not equal, e.g.

P(a, v)
P(a, f (x))

⇒ DS = { v, f (x) }.

4. Find variable v ∈ DS and term t ∈ DS that does not contain v.
If this is not possible, abort. Not unifiable.

5. Set θ = θ ∪ { v/t }.
6. Goto 2.

7 Planning

Planning can be summed up as follows: Given a set of actions, an initial and a goal state, find a
plan to reach the initial state from the goal state. Such a plan will consist of an arrangement of
(possibly only partially) ordered actions.

It is important to distinguish planning from searching. While searching considers search states
abstractly without actually requiring any more information than successor states and edges to them,
planning works based on more detailed information on nodes, e.g. multiple preconditions. This
allows the planning algorithm to create plans more easily, without as much search state generation.

7.1 STRIPS Operator

For planning, we can use STRIPS operators to
formalise a single step. Such an operator consists
of an action, a set of positive literals as precon-
ditions and another set of positive and negative
literals as effects.

All preconditions have to be met in the previous
state so that an action can be carried out, and the
following state is defined by the previous state,
modified by the effects of the action.

Definition: STRIPS Operator

STRIPS Operators are noted as follows:

Op(Action : Go(there) ,
Precond : At (here)

∧ Path (here , there) ,
E f f e c t : At (there)

∧ ¬At (here))

Further, there exist Start and Finish operators. The Start operator only has effects and no
preconditions, thus defining an initial state. The Finish operator only has preconditions and no
effects, defining the final state.

10

7.2 Plans

Definition: Complete Plan

A plan is complete if:

∀ Sj, c ∈ Precond(Sj) : ∃ Si, Si ≺ Sj, c ∈ Effects(Si)

and if, for every linearization

∀ Sk, Si ≺ Sk ≺ Sj,¬c ̸∈ Effects(Sk)

Definition: Consistent Plan

A plan is consistent if:

Si ≺ Sj =⇒ Sj ̸≺ Si

and, provided distinct A and B

x = A =⇒ x ̸= B

A complete plan requires that for any step every precondition to be fulfilled by some predecessor and
that no step between the fulfilment and the requirement of a condition undoes this. A consistent
plan requires that no two actions take place at the same time. A plan that is both complete and
consistent is called a solution.

The initial plan consists only of the problem description, i.e. the Start and Finish states.

Partially ordered plans are a preorder on steps which means it defines a must-happen-before-
relationship (≺). Steps are STRIPS operators with instantiated variables. This delays plan decisions
as long as possible: We try not to commit to an order of two unrelated series of steps. Partially
ordered plans can be linearised to an actual order on steps.

Algorithm: POP (Partial Order Planning)

Input: Start and Finish states, operators.

Output: Partial order plan plan.

Instructions may fail: You may need to backtrack (revert to earlier state and try something else).

1. Create the initial plan with Start ≺ Finish and no causal links.
2. While plan is not a solution (steps fulfil precessors):

a) Select a subgoal: A step Sneed with a precondition c that has not been achieved.
b) Choose an operator Sadd that has effect c.

fail if this is not possible.
i. Add a causal link Sadd

c→ Sneed.
ii. Add ordering constraint Sadd ≺ Sneed.

iii. If Sadd is a new step in the plan, then also add Start ≺ Sadd ≺ Finish.
c) Resolve threats. For each Sthreat that threatens Si

c→ Sj choose either:
• Promotion: Add Sthreat ≺ Si.
• Demotion: Add Sj ≺ Sthreat.

If the plan is not consistent, fail.
3. Return plan.

The POP algorithm calculates a partial order plan. It does so by inserting actions that fulfil at least
one of an operators unfulfilled conditions. Sometimes steps threaten each other: Some step may
destroy the causal link between to other steps. In this case the threat must be either promoted (put
the threat after the link) or demoted (put the threat before the link). Since threat resolution and
operator selection can fail, backtracking may be necessary. The POP algorithm is PSPACE-complete.

11

8 Uncertainty

8.1 Probability Theory

P(A) is the probability that A holds. A is a proposition of propositional logic where we allow
contructs like X = n for random variables X and n taken from a finite domain. For example
P(roll = 6) = 1

6 describing the probability to roll a 6 using a dice with random variable roll 6 taken
out of the domain ⟨1, . . . , 6⟩.

Definition: Axioms of Probability Theory

P ∈ [0, 1] ⊆ R P(true) = 1, P(false) = 0 P(A ∨ B) = P(A) + P(B)− P(A ∧ B)

Conditional Probabilities P(A | B) describe the
probability the A holds if B holds. This condi-
tion B is also called the evidence and often plays
the role of background knowledge, similar to a
propositional knowledge base.

For example:
P(playingFootball | weather = sunny).

Definition: Conditional Probability

P(A | B) :=
P(A ∧ B)

P(B)

Bayes rule allows diagnostic reasoning: Based
on prior knowledge of a condition B for A
(P(A | B)), and knowledge about A (P(A)) and B
(P(B)) independently, we can infer probabilities
about B being true given A holds (P(B | A)).

Put differently: Bayes Rule calculates the proba-
bility of a cause B given an effect A from a causal
relationship A | B and independent information.

Theorem: Bayes Rule

P(B | A) =
P(A | B) · P(B)

P(A)

P(cause | e f f ect) =
P(e f f ect | cause) · P(cause)

P(e f f ect)

1/ P(A) is not an “important” term, so Bayes Rule is often written with α = 1/ P(A):
P(B | A) = α · P(A | B) · P(B).

This is called normalisation.

8.2 Belief Networks

Belief networks use Bayes Rule with a conditional independence assumption for efficiently combin-
ing evidence consisting of many variables, i.e. calculating conditional probabilities with multiple
conditions. These assumptions take the form of “if A is given, then B and C are independent of
each other”:

P(C | A ∧ B) = P(C | A) and P(B | A ∧ C) = P(B | A).

Together with Bayes Rule, we obtain the Bayesian update as follows:
P(A | B ∧ C) = α · P(A) · P(B | A) · P(C | A)

12

A belief network represents causal relationships
with independence assumptions. Each node is
has edges to other nodes if there is a direct
causal relationship between the corresponding
variables.

The probability associations for each node are
called Conditional Probability Tables (CPTs).

The network is a correct representation of a joint
distribution if each node is conditionally inde-
pendent of all its other (recursive) predecessors
given its (direct) parents.

Definition: Belief Network

A belief network/Bayesian network is a di-
rected acyclic graph G = (V, E) where

• V represent random variables,
• each node X ∈ V has conditional

probabilities
P(X | Vin(X))

with Vin(X) being the set of nodes
with incoming edges to X.

To compute joint distributions, we can now simply use the network’s independence relations.

P(X1 ∧ . . . ∧ Xn) =
n

∏
i=1

P(Xi | Vin(Xi))

8.3 d-Separation

d-Separation (direction-dependent separation) allows computation of independence relationships in
polynomial time. This is useful for belief network construction. The algorithm is incomplete (does
not necessarily find all independence relationships), but is “good enough” for many applications.

E d-separates X from Y ⇒ X is independent of Y given E.

Definition: d-Separation

E d-separates X and Y if, on every undi-
rected path from a node in X to a node in
Y, there exists a node Z on this path such
that one of the following holds:

• Z ∈ E and the path makes use of one
edge leading into Z and one leading
away from Z according to their origi-
nal direction, or

• Z ∈ E and both edges used point
away from Z, or

• neither Z nor any of its successors
are contained in E and both edges
lead into Z.

X E Y

Z

Z

Z

9 Learning

9.1 Kinds of Feedback during Learning

In supervised learning, the learner has access to input and correct output.

13

Reinforcement learning only gives feedback in terms of rewards and punishment, but not correct
answers.

Unsupervised learning happens without any feedback to the learner. The learner must learn on its
own.

9.2 Decision Lists

Decision lists (DL) consist of a number of tests, which themselves consist of a conjunction of a
bounded number of literals. If a test is successful, i.e. all the literals are satisfied, then the DL tells
us which value to return. Otherwise, the next test is tried.

Algorithm: Decision Lists

Input: A set of examples with attributes.

Output: A decision list.

1. If the set is empty, return No.
2. Find a subset of the examples such that it contains either only positive or only negative

examples. Then find a test t such that our subset satisfies that test. If no such t exists,
return failure.

3. If the subset contains only positive examples, set outcome o to Yes. Else, set o to No.
4. Add test t with outcome c to our decision list. Repeat with remaining example set.

A(x) B(x) ∧ C(x)

Yes Yes

No
N

Y

N

Y

This decision list correspondents to the query

A(x) ∨ [B(x) ∧ C(x)].

A pseudocode version of this query would look
like this:

func t ion sampleQuery (x) :
i f (A(x)) :

re turn Yes ;
e l s e i f (B (x) and C(x)) :

re turn Yes ;
e l s e :

re turn No;

9.3 Decision Trees

We can measure the average amount of informa-
tion produced by some stochastic source of data
with probabilities using the metric (information)
entropy. High entropy means the source gener-
ates more information. For our purposes, low
entropy also means the source can be predicted
more easily.

Consider a fair coin flip with probabilities 1
2 for

both heads and tails. This source has entropy
I(1

2 , 1
2) = 1. However, a biased coin, e.g. one with

probability 99
100 has entropy I(99

100 , 1
100) = 0.08.

Definition: Information Entropy

Let v1, . . . , vn be the outcomes of a prob-
abilistic experiment with probabilities
P(v1), . . . , P(vn).

I(P(v1), . . . , P(vn))

:= −
n

∑
i=1

P(vi) · log2(P(vi))

We define log2 0 := 0.

14

Definition: Information Gain

Let a be an attribute with n negative and p positive examples. Further, let pi respectively ni
be the number of positive respectively negative occurrences of attribute value i.

Gain(a) = I(
p

p + n
,

n
p + n

)− Remainder(a),

Remainder(a) = ∑
value i

(
pi + ni

p + n
· I
(

pi

pi + ni
,

ni

pi + ni

))
.

Decision tree-learning now builds decision trees by
choosing attributes with the highest information
gain until the attribute set only has Yes or No
results.

The key idea is that, to build a small decision
tree, and assuming the the simplest hypothesis is
the most likely, high information gain is a metric
of how good an attribute is at predicting the final
decision.

For the purpose of decision tree-learning, it suf-
fices to calculate Remainder(a) for each attribute
a, since the rest of the information gain term
remains the same throughout an iteration.

Algorithm: Decision Tree-Learning

Input: A set of examples with attributes.

Output: A decision tree.

1. Choose a = argmina Remainder(a), i.e.
the attribute with the smallest remain-
der (ergo highest information gain).

2. Create a node for a:
• If a only has positive or negative ex-

amples, return a leaf with Yes or No
accordingly.

• Otherwise recursively build subtrees
for each value with the remaining at-
tributes.

15

9.4 Neural Networks

Neural networks are kind of similar to the human brain (but not in any detail). Neural networks
consist of units (neurons) with links (synapses) between units with input and output edges. These
edges have weights, usually real numbers. Units have an output value based on its weighted inputs
called activation level. Special input and output units are connected to the external environment.

The output ai of a unit i is usually calculated using some nonlinear function g.

ai := g

(
∑

j
Wj,i · aj

)

9.4.1 Network Topologies

Feed-forward networks are connected like a directed acyclic graph. Here, we call units that are not
connected to the environment hidden units. Special cases of feed-forward networks are perceptrons
which do not have hidden units.

Recurrent networks have arbitrarily complex connections.

Networks often have a layer structure where units of one layer are only connected to nodes of the
next layer.

9.4.2 Neural Network Learning

The following simple learning algorithm for perceptrons will always converge to the correct output
for representable functions. Unfortunately, perceptrons can only represent linearly separable
functions.

Algorithm: Perceptron Learning

Input: Set of examples and learning rate α.

Output: A perceptron.

1. Initialise network with randomly assigned weights.
2. Repeat until examples are correctly predicted or stopping criterion is reached:

• For each example e ∈ examples:
a) Let I be the input for e and T be the actual observed output for e.
b) Calculate output O using current network and input e.
c) Update weights: Wj = Wj + α · Ij · (T − O).

3. Return network.

The learning algorithm is a bit more complex for multi-layer feed-forward networks. It is called
back-propagation, because it propagates updates backwards through the network.

16

Algorithm: Back-Propagation

Input: Set of examples and learning rate α and base network.

Output: A multi-layer feed-forward network.

1. Repeat until examples are correctly predicted or stopping criterion is reached:
• For each example e ∈ examples:

a) Let I be the input for e and T be the actual observed output for e.
b) Calculate output O using current network and input e.
c) Compute error in output layer: Err = T − O.
d) Update weights in output layer: Wj,i = Wj,i + α · aj · (Ti − Oi) · g′(ini).
e) For each subsequent layer:

i. δj = g′(inj) · ∑i Wj,iδi
ii. Wk,j = Wk,j + α · Ik · (Ti − Oi) · g′(ini).

2. Return network.

17

	Introduction
	Agent Architectures
	Agent Types
	Environment Properties

	Search
	Search Problems
	Search Strategies
	Uninformed Search Strategies
	Informed Search Strategies

	Games
	Knowledge Representation
	First-order Logic
	Alphabet
	Grammar
	Notation
	Semantics

	Knowledge-Based Systems

	Resolution
	Clausal Form
	CNF for First-order Logic
	The Rules of Resolution
	Most General Unifier (MGU)

	Planning
	STRIPS Operator
	Plans

	Uncertainty
	Probability Theory
	Belief Networks
	d-Separation

	Learning
	Kinds of Feedback during Learning
	Decision Lists
	Decision Trees
	Neural Networks
	Network Topologies
	Neural Network Learning

