
tightcenter

1

panikzettel.htwr-aachen.de

Algorithmic Foundations of Data Science PanikzettelTM

Jan Fritz, Christoph von Oy, Sophie Hallstedt

Version 5 — 05.08.2020

Contents

0 Introduction

This is the Panikzettel for Algorithmic Foundations of Data Science. It’s ’kinda’ long. We also don’t
really know how it happened. We were going through the slides and added almost everything that
could be important.

This project is licensed under CC-BY-SA-4.0 and can be found on the Git server of the RWTH:
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

2

https://panikzettel.htwr-aachen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://git.rwth-aachen.de/philipp.schroer/panikzettel

1 Machine Learning Basics

Some terminology:

• Data is a collection of data items.
• Each data item is represented by a feature vector of properties.
• Properties are also called features or attributes. Each feature has a domain of possible values.
• The instance space is the Cartesian product of the domains. This is exactly the space of all

possible feature vectors.
• The dimension of the instance space is the number of features.
• The given data is often split into a training sequence and a test set. The validation is the

evaluation of the trained model against the test data.

1.1 Types of Learning

1.1.1 Supervised Learning

The agent tries to learn functions from exemplary input-output pairs.
This is called classification if the function is finite-valued. In this case, it is the prediction of values
for future inputs.
It is called regression if the function is numerical. In this case, the agent tries to predict expected
values for future inputs.

In a passive learning scenario the training examples are given without any manual influence in the
selection of examples.
In an active learning scenario the learning algorithm can actively choose specific data points and ask
for their target values.

One distinction:

• In batch learning all examples are given at once and the agent has to come up with a good
hypothesis.
• In online learning the examples are given over time which means the agent has to improve the

hypothesis over time.

1.1.2 Semi-Supervised Learning

Semi-supervised learning is set-up like supervised learning but there are only a few and possible
faulty examples.

1.1.3 Unsupervised Learning

The goal of this method is to detect patterns in data while no explicit feedback is supplied. The
most important task in unsupervised learning is clustering.

3

1.1.4 Reinforcement Learning

The agent in reinforcement learning tries to find actions which maximize the reward or minimize
the punishment. This is often a trial-and-error-process.

1.2 Hypotheses and Hypothesis Space

The goal in a supervised learning setting is to learn an unknown target function. A learning
algorithm chooses a hypothesis h from a predefined hypothesis space H. (For example all linear
functions or all functions that can be described by a decision tree.)
The goal of a learning algorithm is to produce a hypothesis that generalizes well and approximates
the target function well on all data points and not only on the training set.

A learning problem is realizable if the target function is in the hypothesis space.

Definition: Occam’s Razor

Choose the simplest hypothesis consistent with the data

1.3 Nearest Neighbor Learning

The idea here is to predict the value of a function at a point x by looking at the known value of its
neighbors. To avoid coincidences, it makes sense to look at several points close to x and then take
the majority or average values of these points.
The underlying assumption is that items are close together if they have similar function values.

Definition: Metric

A metric is a function from an instance
space X to R such that for all x, y, z ∈ X

the following three properties apply:
• Nonnegativity:

d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

• Symmetry:

d(x, y) = d(y, x)

• Triangle Inequality:

d(x, z) ≤ d(x, y) + d(y, z)

For example the Euclidean distance

d(x, y) =

√
n

∑
i=1

(xi − yi)2

is a common metric.

Definition: Metric Space

Let X be the instance space and d a metric.
Then (X, d) is a metric space.

1.3.1 Description of Classification Problems

The goal of a classifier is to learn an unknown function f that associates a class f (x) ∈ Y with every
data item x ∈ X. Therefore, given labeled examples (x1, y1), . . . , (xm, ym) where each xi ∈ X is a
data item and yi = f (x) is the respective class, the learning algorithm is supposed to produce a
classifier that predicts the value f (x) for a new data item x.

4

1.3.2 The k-Nearest Neighbor Classifier

This classifier finds for each x ∈ X the k nearest neighbors of x. Then, it checks which class appears
most among the neighbors of x.

Algorithm: k-Nearest Neighbor

Input: k ∈N and x ∈ X where X = (X, d) is the instance space.

Output: The class that appears most among the neighbors of x.

1. Find the k nearest neighbors (using d) of the point x.
2. Count which class appears most among the neighbors of x and return this class.

If there appears a tie between the numbers of classes among the neighbors of x it can be broken
arbitrarily. For example, the class with the lowest index could be chosen.

The remaining question is how to choose the number of neighbors k that is taken into account.
There is no definite answer to this question but there are a few rules of thumb that can be applied:

• If k = 1, then the hypothesis (=classifier) is guaranteed to be consistent with the examples but
it is very likely to overfit.
• The larger k is chosen, the simpler the hypothesis gets but at some point the hypothesis will

start to over-simplify. For example, if we choose k as high as the number of available points xi.
• The best value of k depends on the application or can be learned by Machine Learning

techniques too.

1.4 Decision Trees

Decision trees are only defined for functions that have finite-valued features and finitely many
output values. If there are numerical values, they are partitioned into finitely many intervals.

1.4.1 Syntax of Decision Trees

A decision tree is a tree with labeled nodes and edges. It has the following properties:

• Every internal node is labeled with a feature.
• Every edge is labeled by a value or range of values from the feature in the source node.
• Every leaf is labeled with an output label.

The following algorithm is used to build decision trees:

5

Algorithm: Greedy Decision Tree Building

Input: The set of features A and the set of examples S.
Output: A decision tree t

1: if S = ∅ then
2: create leaf t with an arbitrary value
3: else if all examples in S have the same result then
4: create leaf t with that output
5: else
6: Choose feature A ∈ A that discriminates best between examples in S . How to do this

is in the next chapter.
7: Create new node t with feature A
8: Partition examples in S according to their A-value into parts S1, ..., Sm

9: Recursively call algorithm inA\{A} on the partitions S1, ..., Sm and attach the resulting
trees ti as children to t

10: end if
11: return t

Theorem: Complexity of Computing Decision Trees

Computing a minimal decision tree for a given set of examples is NP-complete. More precisely,
the following decision problem is NP-complete:
Instance: Examples (x1, y1), ..., (xm, ym) for a Boolean function in n variables, integer k ≥ 0
Problem: Decide if there is a decision tree with at most k nodes that is consistent with the
examples

1.4.2 Representation of Boolean Formulas as Decision Trees

Theorem: Boolean Formulas as Decision Trees

Let B := {0, 1} be the the Boolean domain and f : Bn → B be a Boolean function that can be
represented by a decision tree of height k. Then f can be represented by both a k-CNFa and a
k-DNFb.

aCNF = conjunctive normal form with clauses (= disjunctions of literals) of at most k literals.
bDNF = disjunctive normal form with terms (=conjunctions of literals) of at most k literals.

1.5 The Perceptron

The perceptron algorithm is a linear classification algorithm. The goal is to learn an unknown target
function f : R` → {1,−1}. The input of the learning algorithm is a sequence of the form

S = ((x1, y1), . . . (xm, ym)) ∈ R` × {1,−1}.

6

The hypothesis space consists of linear separators, meaning, functions h : R` → R of the form

h(x) = sgn(〈w, x〉 − b) =

+1 if 〈w, x〉 − b > 0

0 if 〈w, x〉 − b = 0

−1 if 〈w, x〉 − b < 0

for some weight vector w ∈ R` and a bias b ∈ R. (Note that 〈a, b〉 denotes the scalar product.)

Formally, a linear classification problem is not realizable because the target function has the range
{+1,−1} and all hypotheses have the range {+1, 0,−1}. This can be solved by using a target
function of the following form

f (x) =

{
+1 if 〈w, x〉 − b ≥ 0

−1 if 〈w, x〉 − b < 0
.

Then, for every finite set of points x1, ..., xn ∈ R` we can find a hypothesis h of the form h(x) =
sgn(〈w′, x〉 − b′) such that f (xi) = h(xi).

Definition: Consistent Hypothesis

A hypothesis h is consistent with the training sequence S = ((x1, y1), . . . (xm, ym)) if h(xi) = yi
for all i ∈ [1, m].

1.5.1 Normalizing the Data Points

Definition: Homogeneous linear separator

A homogeneous linear separator is a function of the form x 7→ sgn(〈w, x〉).

Therefore a homogeneous linear separator is a linear separator without bias.

Suppose we have a training sequence S = ((x1, y1), . . . (xm, ym)) with xi = (xi1, . . . , xi`) ∈ R` and
yi ∈ {−1, 1}. The training sequence can be normalized by applying the transformation

xi 7→ x̂i :=
x′i

max1≤j≤m ‖ x′j ‖

to the data points xi where x′i := (xi1, . . . , xi`, 1). The 1 at the end is added to remove the need for
the bias b. Instead, the bias can now be encoded as an additional entry in the weight vector w.

The normalized training sequence

Ŝ = ((x̂1, y1), . . . , (x̂m, ym))

has the following properties that are often very useful to work with:

• Ŝ has a homogeneous linear separator if and only if S has a linear separator.
• 0 <‖ x̂i ‖≤ 1 for all i ∈ [1, m]

7

1.5.2 Algorithm for the Perceptron

Algorithm: Perceptron Algorithm

Input: Normalized training sequence S.
Output: Weight vector w such that the hy-

pothesis x 7→ sgn(〈w, x〉) is consistent
with S.

1: w← 0
2: repeat
3: for all (x, y) ∈ S do
4: if sgn(〈w, x〉) 6= y then
5: w← w + yx
6: end if
7: end for
8: until sgn(〈w, x〉) = y for all (x, y) ∈ S

The perceptron algorithm always finds linear
separators if they exist and does this very effi-
ciently. However, the separators found are only
consistent, but not optimal in any sense.

Theorem: Runtime of the perceptron algo-
rithm

Let S be a normalized sequence of exam-
ples such that there is a homogeneous lin-
ear separator consistent with S of margin
γ.
Then the perceptron algorithm applied to
S finds a linear separator after at most 1

γ2

updates of w.

Definition: Margin of a linear separator

Let h : x 7→ sgn(〈w, x〉) be a linear separa-
tor consistent with a sequence S of exam-
ples.
The margin of h with respect to S is

min
(x,y)∈S

|〈w, x〉|
‖w‖

1.6 k-Means Clustering

The goal of k-means clustering is to put a collec-
tion of data points into k clusters. In the context
of the lecture, k is fixed in advance. Clustering
is an unsupervised learning problem.

Definition: Centroid Clustering Problem

Given data points x1, ..., xn ∈ R`, k ∈ N,
find points z1, ..., zk ∈ R` and a partition
C1, ..., Ck of {x1, ..., xn} that minimizes

k

∑
j=1

∑
x∈Cj

‖ x− zj ‖2

Algorithm: k-means algorithm

Input: x1, ..., xn ∈ R`, k ∈N

Output: A partition C1, ..., Ck of the data
points.

1: Choose initial centroids z1, ..., zk

2: repeat
3: Cj ← ∅ for all j ∈ [1, k]
4: for i← 1 to n do
5: j← argminj ‖ xi − zj ‖
6: add xi to Cj

7: end for
8: zj ← ∑x∈Cj x

|Cj| for all j ∈ [1, k]

9: until C1, ..., Ck no longer change

8

Theorem: Complexity of Centroid Clustering

The following properties apply for the complexity of centroid clustering:
1. The Centroid Clustering problem is NP-hard, even if either the dimension ` or the

cluster number k is fixed to be 2.
2. If both k and ` are fixed, the problem can be solved in polynomial time.

Theorem: Runtime of the k-means algorithm

The k-Means algorithm always halts in a finite number of steps. This number of steps can be
exponential in the number n of input points but in practice, the algorithm usually converges
quickly.

The k-Means algorithm does not necessarily compute an optimal solution for the Centroid Clustering
problem. The found clustering can depend on the chosen initial centroids.

2 Information and Compression

2.1 Background from Probability Theory

The lecture material begins with a refresher on random variables. For basic probability theory refer
to the panikzettel on stochastics.

Theorem: Markov’s Inequality

Let X be a nonnegative random variable.
Then for all a > 0

Pr(X ≥ a) ≤ E(X)

a

Theorem: Chebyshev’s Inequality

Let X be a random variable. Then for all
b > 0

Pr(|X− E(X)| ≥ b) ≤ Var(X)

b2

2.1.1 Concentration Inequalities

Concentration inequalities are used to bound the probability of unlikely events (i.e. events that lie
in the outer tails of a distribution). In this lecture, they are mostly used to estimate error bounds for
various algorithms.

Definition: Concentration Inequalities

Let X = ∑n
i=1 Xi a sum of random variables with expected value µ := E(X). Then a

concentration inequality (also called tail bound) has the form

Pr(|X− µ| ≥ something big) ≤ something small

9

https://panikzettel.philworld.de/stocha.pdf

Theorem: Chernoff Bounds

Let X1, ..., Xn be a sequence of independent
{0, 1}-valued random variables. Let X :=
∑n

i=1 Xi and µ := E(X). Then for 0 ≤ c ≤
1:

Pr(X ≥ (1 + c)µ) ≤ e−
µc2

3

and
Pr(X ≤ (1− c)µ) ≤ e−

µc2
2

Consequently:

Pr(|X− µ| ≥ cµ) ≤ 2e−
µc2

3

Theorem: Hoeffding Bounds

Let X1, ..., Xn be a sequence of i.i.d. {0, 1}-
valued random variables. Let X := ∑n

i=1 Xi
and µ := E(X). Then for 0 ≤ d ≤ 1:

Pr(X ≥ µ + dn) ≤ e−2nd2

and
Pr(X ≤ µ− dn) ≤ e−2nd2

Consequently:

Pr(|X− µ| ≥ dn) ≤ 2e−2nd2

Theorem: Log Sum Inequality

For all i ∈ [n], let pi ∈ R≥0, qi ∈ R>0, and let p := ∑i pi and q := ∑i qi. Then

n

∑
i=1

pi log
(

pi

qi

)
≥ p log

(
p
q

)

Theorem: Concentration for More General Random Variables

Let X1, ..., Xn be a sequence of independent random variables with E(Xi) = 0 and Var(Xi) ≤
σ2 and X := ∑n

i=1 Xi. Let a ∈ R such that 0 ≤ a ≤
√

2nσ2 and suppose that

E(Xk
i) ≤ σ2k!

for 3 ≤ k ≤ d a2

4nσ2 e. Then

Pr(|x| ≥ a) ≤ 3e−
a2

12nσ2

2.2 Entropy

2.2.1 Information of an Event

The idea is to find a measure for the information content of a single event in a probability space so
that it only depends on the probability of the event:

• An event that is certain (has probability 1) has information content 0.
• An event that is impossible (has probability 0) has no information content.
• Rarer events have higher information content.
• The joint information content of two independent events is the sum of their individual

information contents.

10

We assign information content I(A) to events A
of a finite probability space (Ω,P) such that all
our requirements are satisfied by letting I(A) =

logb
1
P(A)

for some basis b > 1.

Definition: Information Content

The information content of an event A is

I(A) = log2

(
1
P(A)

)
.

2.2.2 Entropy

The entropy is the expected information value of an event ω.

Definition: Entropy of a Probability Distribu-
tion

The entropy of a probability distribution
P on a finite sample space Ω is defined as

H(P) := ∑
ω∈Ω
P({ω}) · log2

1
P({ω}) .

To avoid the case where the denominator
is 0 we define 0 · log(1

0) = 0. Alternatively
sum only over the events with P(ω) > 0.

Definition: Entropy of a Random Variable

The entropy of a random variable X with
finite range is defined as

H(X) := ∑
x∈range(X)

Pr(X = x) · log2
1

Pr(X = x)

Intuitively, it is also possible to view entropy as a
measure of disarray. I.e. low entropy means that
after drawing a high number of samples from a
distribution we will not see much variation.

2.2.3 Entropy for Decision Tree Learning

We need a measurement for the information content of a feature in order to choose the next node in
decision tree learning. Thus, we use the concept of entropy to find the feature that discriminates
best.
In the decision tree setting, we have a set S of labeled examples (x, y), where x is the feature vector
over A and y ∈ Y is the target value. With this, we can describe the information gain of a feature A
as the difference between the entropies of P and PA=x weighted by the relative size of SA=x.

Definition: Information Gain

Let H(P) be the entropy of the probabil-
ity distribution and DA is the set of all
possibles values of the feature A. The in-
formation gain of feature A is then

G(S, A) := H(P)− ∑
x∈DA

|SA=x|
|S| ·H(PA=x).

Step by step:

1. Compute the total entropy H(H).
2. Compute all H(PA=x).
3. Compute information gain and choose fea-

ture with the highest gain.

11

2.3 Compression

Entropy can be interpreted in two ways:

1. Information is the average number of bits that are needed to store samples from a distribution.
We assume we use the best possible encoding scheme to store the information.

2. The information content of the distribution should measure how well we can compress a
string consisting of independently sampled symbols.

Definition: Compression Scheme

A compression scheme over Σ is a pair Γ = (comΓ, decΓ) where comΓ : Σ∗ → {0, 1}∗ is a
compression mapping and decΓ : {0, 1}∗ → Σ∗ is a decompression mapping.
A lossless compression means that dec(com(x)) = x for all x ∈ Σ∗.

• Intuitively, the compression rate of a
scheme Γ is the maximum compression
rate of Γ on all strings in Σ∗, but this maxi-
mum does not necessarily exist
• Encoding the symbols of Σ as bit strings

requires dlog|Σ|e bits per symbol
• One may argue that a compression scheme

Γ actually achieves compression when

com(x) < |x| · dlog |Σ|e ∀x

or equivalently

ρΓ(n) < dlog |Σ|e.

Definition: Compression Rate

Compression rate of scheme Γ on string x:
|comΓ(x)|
|x| .

As a function, the compression rate of Γ is
ρΓ : N→ R defined as

ρΓ(n) := max
x∈Σn

|com(x)|
|x| .

Theorem: Existence of Lossless Compression

Let n ∈ N. There is no lossless compres-
sion scheme Γ such that ρΓ(n) < log |Σ|.

2.3.1 Generating the Input Strings

Assume that input strings are generated randomly and symbols xi in a string x = x1...xn are
independently identically distributed (i.i.d.), i.e. each symbol of a string is drawn individually from
the same distribution.
This does not give us a probability distribution on the set Σ∗ of all strings over Σ.

Definition: Input Strings for Compression Schemes

For every n ∈N define a probability distribution Pn on Σn as

Pn({x1...xn}) :=
n

∏
i=1
P({xi}).

Strings of length n are distributed according to Pn.

12

2.4 Lossy Compression

Definition: Loss Rate

Let Γ be a compression scheme over Σ. The loss rate of Γ is the probability that a compressed
string is not decompressed correctly:

λΓ,P (n) := Prx∼Pn(x 6= dec(com(x)))

Key idea: Only focus on strings that occur significantly often, while ignoring unlikely strings.

It is possible to define a compression scheme Γε = (comε, decε) with an upper limit ε > 0 for the
loss rate during compression:

1. For every n ∈N, choose a set Sε(n) ⊆ Σn of minimum cardinality such that

Pn(Sε(n)) ≥ 1− ε

Let sε(n) := dlog(|Sε(n)|)e.
2. Define the compression mapping comε so that for every n we have

comε(Σn) ⊆ {0, 1}sε(n)

and the restriction of comε to Sε(n) is injective.
3. Define the decompression mapping decε so that for all x ∈ Sε(n) we have decε(comε(x)) = x

Resulting loss rate
λε(n) ≤ ε ∀n ∈N

and compression rate

ρε(n) =
sε(n)

n
∀n ∈N with lim

n→∞

sε(n)
n

= H(P)

2.5 Shannon’s Source Coding Theorem

Theorem: Shannon’s Source Coding Theorem

1. For every ε > 0 there is a compression scheme Γε over Σ such that λΓε,P (n) ≤ ε for all n
and limn→∞ ρΓε(n) = H(P).

2. There is no compression scheme Γ such that for some α, β > 0 it holds that λΓ,P (n) ≤ 1− α

and ρΓ(n) ≤ H(P)− β for infinitely many n ∈N.

3 Statistical Learning Theory

3.1 PAC (Probably Approximately Correct) Learning Framework

Goal: Given training examples, we want to ”learn” a hypothesis that generalises well (i.e. is a good
approximation to the unknown target function).

13

Definition: Formal framework for PAC

• Instance space X,
• Data generating probability distribution D

on X,
• Target function f ? : X→ { 0, 1 },
• Training sequence T =

((x1, y1), . . . , (xm, ym)) ∈ (X× { 0, 1 })m,
• Hypothesis h : X→ { 0, 1 }.

Definition: Training error

The training error (or hypothetical risk) of
a hypothesis h w.r.t a training sequence T
is

errT(h) =
1
m
| { i ∈ [m] | h(xi) 6= yi } |

If errT(h) = 0 then h is consistent with T.

If the instances x1, . . . , xm of a training sequence are drawn independently from D we write T ∼ Dm.

Definition: Generalization error

Let f ∗ be the target function. The generalization error of a hypothesis h is

errD(h) = Pr
x∼D

(h(x) 6= f ?(x))

Definition: Probably Approximately Correct Learning

A learning algorithm that on input T produces a hypothesis hT is a PAC learning algorithm if
for all ε, δ > 0 there is an m = m(ε, δ) such that for every probability distribution D on X

Pr
T∼Dm

(errD(hT) ≤ ε) > 1− δ

In practice, the training error is easier to compute, leading to ERM algorithms.

Definition: Empirical Risk Minimization

An algorithm that returns on input T a
hypothesis hT in a given hypothesis class
H is an ERM algorithm if

hT = argmin
h∈H

errT(h)

Definition: Regularization

To avoid overfitting, we expand the defi-
nition of ERM to the following formula,
using an arbitrary monotone (often linear)
function ρ(h):

hT = argmin
h∈H

(errT(h) + ρ(cost(h)))

3.2 Sample Size Bounds for Finite Hypothesis Classes

Since a learning algorithm can only see the training error, we need to aim for situations in which
the training error is close to the generalization error. We can prove that for sufficiently large sample
sizes, a low training error leads to a small generalization error.

Definition: Agnostic Learning

A learning approach that does not assume that the learning problem at hand is realisable.

Note ln(x) = loge(x).

14

Theorem: Simple Sample Size Bound

Let H be finite, ε, δ > 0 and

m ≥ 1
ε

ln(
|H|

δ
)

Then for any data generation distribution D

Pr
T∼Dm

(∀h ∈ H : (errT(h) = 0⇒ errD(h) ≤ ε)) > 1− δ

If we take an ERM algorithm with a finite hypothesis space that satisfies the realizability assumption
and define m according to the simple sample size bound, then we end up with a PAC algorithm.

If we cannot make any assumptions about realizability, the following two bounds come into play.

Theorem: Uniform Convergence

Let H be finite, ε, δ > 0 and

m ≥ 1
2ε2 log(

2|H|
δ

)

Then for any data generation distribution D

Pr
T∼Dm

(∀h ∈ H : |errT(h)− errD(h)| ≤ ε) > 1− δ

Theorem: Agnostic PAC Learning Sample Size Bound

Consider an ERM algorithm with a finite hypothesis class H. Let ε, δ > 0 and

m ≥ 2
ε2 log(

2|H|
δ

)

Then for any data generation distribution D and h? = argminh∈H errD(h)

Pr
T∼Dm

(|errD(hT)− errD(h?)| ≤ ε) > 1− δ

3.3 Infinite Hypothesis Classes

3.3.1 Description Schemes

Definition: Description Scheme

• Let H be a hypothesis class, it can be infinite.
• Let ∆ be a scheme to describe hypotheses with strings built from a finite alphabet Σ.
• For every h ∈ H let |h|∆ be the length of the shortest description.

15

Theorem: Sample Size Bounds for Infinite Hypothesis Classes

Let n ∈N, ε, δ > 0 and

m ≥ 1
ε

(
n ln |Σ|+ ln

(
2
δ

))
Then for any data generating distribution D,

Pr
T∼Dm

(∀h ∈ H : (|h|∆ ≤ n ∧ errT(h) = 0⇒ errD(h) ≤ ε)) > 1− δ

Note that the theorem does not depend on the description scheme. Note further that the theorem
only says that simple hypotheses are never bad, not that more complex hypotheses are worse than
simpler ones.

3.3.2 VC Dimension

The second generalization to infinite hypothesis classes is a combinatorial measure for the complexity
of a hypothesis class.

Definition: VC Dimension

• Let H be a hypothesis class of func-
tions h : X→ {0, 1}

• A subset Y ⊆ X is shattered by H if
every function g : Y → { 0, 1 } is the
restriction of a function in H to Y.
• The VC-dimension VC(H) is the

size of the largest set shattered by
H or ∞ if arbitrarily large sets are
shattered.

Theorem: Uniform Convergence for VC Di-
mension

Let H be a hypothesis class of finite VC-
dimension d. Let ε, δ > 0 and

m ≥ c
ε2

(
d + log

(
1
δ

))
for a suitable constant c. Then for any data
generation distribution D,

Pr
T∼Dm

(∀h ∈ H : |errT(h)− errD(h)| ≤ ε) > 1− δ.

Most exercises for VC dimension proofs consist of the same three parts.

1. Claim VC(H) = d. There is no formal concept to determine a correct d. It can be a bit of
guessing and checking.

2. Show VC(H) ≥ d by showing there is a set of size d that can be shattered by H. Construct a
set with d elements and for each configuration of 1 and 0 of this set show that there exists a
corresponding function in H.

3. Show VC(H) ≤ d by showing that no set of size d + 1 can be shattered by H.

Another explanation with examples can also be found here.

4 Multiplicative Weight Updates

This section contains different Multiplicative Weight Update (MWU) Algorithms. First for boolean
events and then a generalized version for multiple events.

16

https://towardsdatascience.com/measuring-the-power-of-a-classifier-c765a7446c1c

4.1 MWU Algorithms

4.1.1 Deterministic MWU Algorithm

For this algorithm, we assume a setting with binary events representing the price movements of a
stock (up or down). We have a set of n experts that give out binary advice. The goal of the algorithm
is to minimize our loss by weighing the expert’s advice and following the weighted majority.

Definition: Weight Majority Notation

We have n experts numbered 1, . . . , n and define for every t ≥ 1:
• p(t) ∈ { 0, 1 }: Price movement on day t (0 for down, 1 for up),
• a(t)i ∈ { 0, 1 } ∀i ∈ [n]: Advice of expert i on day t (0 for don’t by, 1 buy),

• l(t)i = ∑t
s=1 |a

(s)
i − p(s)|∀i ∈ [n]: Cumulated loss of expert i after t days,

• d(t) ∈ { 0, 1 }: Our decision on day t (0 for don’t buy, 1 for buy),
• l(t) = ∑t

s=1 |d(s) − p(s)|: Our cumulated loss after t days,
• w(t)

i ∀i ∈ [n]: The weight assigned by the algorithm to every expert.

Algorithm: Weighted Majority Algorithm

For some constant 0 < α ≤ 0.5, we initially assign weights: w(1)
i = 1∀i ∈ [n]. We then, for

every t ≥ 1, compute our decision based on the previous weights and update the weights
based on the loss:

d(t) =

1 if ∑ i∈[n]

a(t)i =1

w(t)
i ≥ ∑ i∈[n]

a(t)i =0

w(t)
i

0 otherwise
w(t+1)

i =

{
w(t)

i if a(t)i = p(t)

(1− α)w(t)
i otherwise

Theorem: Weighted Majority Analysis

For every t ≥ 1 and every i ∈ [n],

l(t) ≤ 2 ln n
α

+ 2(1 + α)l(t)i .

This theorem guarantees that our cumulated loss
is bounded from above by twice the cumulated
loss of the best expert.

4.1.2 Randomized MWU Algorithm

This is a generalization to multiple events. Instead of simply following the majority vote of experts,
we draw an expert randomly from a probability distribution.

17

Definition: Multiplicative Weight Update Notation

• I: Set of n experts, usually I = [n],
• J: Set of possible events,
• L ∈ RI×J : Loss matrix where Lij describes the loss of following expert i when event j

happens, usually normalized.

We define for every t ≥ 1:

• j(t) ∈ J: Events that happen at time t,
• w(t)

i ∀i ∈ I The weight assigned by the algorithm to expert i,
• A probability distribution D(i) on I defined as

D(t)({ i }) = p(t)i =
w(t)

i

∑i′∈I w(t)
i′

,

• L(t) = ∑i∈I p(t)i Lij(t) : Our expected loss when choosing the expert according to the
probability distribution.

Algorithm: Randomized MWU Algorithm

For some constant 0 < α < 1, we initially
assign weights: w(1)

i = 1 for all i ∈ I. We
then, for every t ≥ 1, update the weights
based on the loss:

w(t+1)
i = (1− α)

L
ij(t) w(t)

i

Theorem: Multiplicative Weight Update Algo-
rithm Analysis

For ever t ≥ 1 and every i ∈ I,

t

∑
s=1

L(s) ≤ ln n
α

+ (1 + α)
t

∑
s=1

Lij(s) .

This theorem guarantees that we have an upper
bound on the expected loss over all time-steps
independent of the happening events.

4.2 Boosting Weak Learning Algorithms

This section will present some techniques to improve the performance of classification algorithms
using Multiplicative Weight Updates.

Definition: Strong Learner

A learning algorithm that produces a hy-
pothesis hT on input T is PAC learning
algorithm or a strong learner if for all
ε, δ > 0 there is an m = m(ε, δ) such that
for every probability distribution D on X

Pr
T∼Dm

(errD(hT) ≤ ε) > 1− δ.

Definition: Weak Learner

Let 0 ≤ γ < 1
2 . A learning algorithm that

produces a hypothesis hT on an input T
is a weak learning algorithm with error
parameter γ if for all δ > 0 there is an
m = m(δ) such that for every probability
distribution D on X

Pr
T∼Dm

(errD(hT) ≤ γ) > 1− δ.

The idea of boosting is reducing the error of a weak learner to turn it into a strong learner. To do

18

this the following steps are executed:

1. Draw a random subset from the initial training set. Each subset is drawn from a different
probability distribution.

2. Run the weak learner on this subset.
3. Adapt the distribution using multiplicative weight updates.

This concept is called AdaBoost.

Definition: Boosting Problem

Input: A sufficiently long training se-
quence T = ((x1, y1), ..., (xn, yn) and an er-
ror parameter ε > 0.
Output: A Hypothesis h with errT(h) < ε.

Theorem: Consistent Hypotheses for Boosting

Let n be the length of the training sequence
and ε be the error parameter in the boost-
ing problem. If ε < 1

n then the resulting
hypothesis h is consistent with the training
sequence.

The boosting algorithm consists of three parts. The setup for the weak learner, the setup for the
MWU algorithm and the actual boosting.

4.2.1 Setup for the Weak Learner

Let L be the weak learner and γ its error parameter.

• Run L with the the confidence parameter δ0 = 1
10 and let m0 = m(δ0) ≤ n for n ∈ N be the

number of examples that are needed.
• Identify the probability distributions DX on X with probability distributions D on X by setting
D(E) := DX(E ∩ X) for all events E ⊆ X. From now on D and DX are the same.

• The weak learner L will now only run on examples drawn accordingly to the already known
probability distributions D on X.
• We call a concluded hypothesis good if it has a generalization error smaller than γ. The weak

learner generates such a good hypothesis with a probability of at least 1− δ0 = 0.9.
• In case L generated a bad hypothesis we re-run it on new examples until a good hypothesis

occurs. With an extremely high probability, this requires only a small number of re-runs.

4.2.2 Setup for the MWU Algorithm

Let the set of experts be I = [1, n] and the set J of the events be the set of hypotheses generated by
the weak learner L when presented with m0 input examples from X.
Then the loss matrix is defined as:

Li,j =

{
1 if j(xi) = yi

0 else

The loss for the expert i is positive and the weight will be decreased if a hypothesis is correct for xi.
Finally, we use the update parameter α = 1

2 − γ.

19

4.2.3 The Boosting Algorithm

We use the described setups for the weak learner L and the MWU algorithm. As before, ε is the
error parameter in the input of the boosting algorithm and α is the update parameter from the
setup of the MWU algorithm.

Algorithm: Boosting Algorithm

1. Consider a run of the MWU algorithm
where j(s) is a hypothesis obtained by
running L on D(s) until it returns a
good hypothesis.

2. Run the MWU algorithm for t = 2
α2 ·

ln(1
ε) rounds.

3. The final hypothesis h is defined by

h(x) =

{
1 if |{s ≤ t | j(s)(x) = 1}| ≥ t

2

0 else
.

4. Return h.

Theorem: Error of the Returned Hypothesis
from the Boosting Algorithm

Let ε be the error parameter in the input
of the boosting algorithm. The error of
the hypothesis that is returned from the
boosting algorithm is

errT(h) < ε.

4.2.4 Run-time of the Boosting Algorithm

The running time of the boosting algorithm largely depends on the calls to the weak learner L. If L
has a short running time, then the boosting algorithm has a short running time too.

For the number of rounds: If we want that the final hypothesis classifies all examples correctly, we
need ε ≈ 1

n steps. Therefore the MWU algorithm is executed in O(log n) rounds.

4.3 Bandit Learning

The bandit learning problem is a reinforcement learning problem. In it we have a set of n slot
machines also called one-armed bandits. All the machines have a different internal setting. Therefore
some of them give a higher reward (= more money) on average than others.
In each round, we choose one of the machines with a certain strategy and observe the reward. Such
a strategy could be simply a randomized strategy. The goal is to minimize the difference (called
regret) between the total payoffs of our strategy and the payoff of the best machine.
We also assume that the setting is adversarial. Thus, an adversary fixes the payoff for each machine
in each round in a way that maximizes our regret.

4.3.1 Formal Description of Bandit Learning

In this setting we have n slot machines numbered from 1 to n. These slot machines represent the
actions. For every s ≥ 1 and every a ∈ [1, n], there is a reward q(s)a with 0 ≤ q(s)a ≤ 1. With this we
can describe a payoff matrix Q := (q(s)a)a∈[1,n],s≥1. If the number of rounds t is fixed in advance Q is
a n× t matrix.

20

https://en.wikipedia.org/wiki/Slot_machine

Definition: Reward and Regret of a Sequence

Let a = (a(1), ..., a(t)) ∈ [1, n]t be a sequence
of actions. The reward of a is

q(a) :=
t

∑
s=1

q(s)
a(s)

.

The regret of a is

r(a) := q(t)max − q(a).

The choice in such a strategy can be random.
Then, a(t) is drawn according to some probability
distribution D(t) on [1, n].

Definition: Maximal Single-Action Reward

The maximal single-action reward after
round t is

q(t)max := max
a∈[1,n]

t

∑
s=1

q(s)a .

Definition: Strategy

A strategy or algorithm A picks an action
a(t) on each round t only depending on the
actions a(s) and the rewards q(s) := q(s)

a(s)
of

the previous rounds s = 1, ..., t− 1.

Definition: Reward and Regret of a Strategy

The expected reward of a strategy A at time t is

q(A) := E(q(a(1), ..., a(t))).

The regret of A is
r(A) := E(r(a(1), ..., a(t))).

4.3.2 Multiplicative Weights Update Algorithm

Exp3 stands for exponential-weight algorithm for exploration and exploitation.

Algorithm: Exp3

Parameter: γ with 0 < γ ≤ 1 to determine the tradeoff between exploration and exploitation.
Initialization: w(1)

a = 1 for all a ∈ [1, n].
1: for s = 1, 2, ..., t do
2: D(s) is the probability distribution defined by

Pr
D(s)

({a}) := p(s)a := (1− γ)
w(s)

a

∑n
a′=1 w(s)

a′
+

γ

n

3: Draw action a(s) randomly from D(s)

4: q(s) ← q(s)
a(s)

. The reward
5: Update the weights:

w(s+1)
a ←

w(s)
a · exp

(
γq(s)

np(s)a

)
if a = a(s)

w(s)
a else

6: end for

21

Theorem: Maximal Regret of Exp3

For every payoff matrix, the expected regret of the Exp3 algorithm is bounded by

r(Exp3) ≤ (e− 1) · γ · q(t)max +
1
γ
· n · ln(n).

This can be improved as follows. Set

γ∗ := min

{
1,

√
n · ln(n)

(e− 1) · q(t)max

}
.

Then for every payoff matrix, the expected regret of Exp3 with the parameter γ∗ satisfies

r(Exp3) ≤ 2.63 ·
√

q(t)max · n · ln(n).

5 High Dimensional Data

5.1 The Strange Geometry of High-Dimensional Spaces

Definition: Volume of High Dimensional-Objects

Let X ⊆ R`. Then vol(X) is the volume of X. It is only defined for measurable sets.

Theorem: Properties of High-Dimensional Objects

• Let X ⊆ R`, let c ∈ R and let cX := {cx | x ∈ X}. Then

vol(cX) = c`vol(X).

• Let X ⊆ R` such that vol(X) > 0 and let 0 ≤ ε ≤ 1. Then
vol((1− ε)X)

vol(X)
≤ e−ε`.

5.1.1 The High-Dimensional Unit Ball

Definition: Unit Ball

The `-dimensional unit ball is the set

B` := {x ∈ Rl |‖ x ‖≤ 1}

Theorem: Volume of the Unit Ball

The volume of the `-dimensional unit ball
is

lim
`→∞

vol(B`) = 0.

For a fixed ` the volume of the unit ball is defined approximately. The unit ball is covered by 2k

22

cylinders of different size. Then we have an approximation for the volume by

vol(B`) ≤
(

2
k

k

∑
i=1

cos
(

i− 1
k

)`−1
)
· vol(B`−1).

The unit ball is an example of why high-dimensional objects can be strange. The volume of the unit
ball does increase with a higher number of dimensions at first but after the jump from five to six
dimensions, the volume decreases.

The theorems on the right mean that at least a

(1− 2
c · e

−c2
2)-fraction of a unit ball has a distance

of at most c√
`−1

from the equator of the unit ball.

The high-dimensional unit ball has some proper-
ties which are similar to the properties of proba-
bility distributions. The volume of the unit ball
is concentrated near the equator. A similar effect
occurs when drawing a point x = (x1, ..., x`) ∈
B` from a probability distribution. On average,
the values |xi| will be around 1√

`
because other-

wise the length of ‖x‖ would be too large. Or
in other words the probability of an |xi| being
much larger than 1√

`
is very low.

Theorem: Volume Concentration at the Equa-
tor

Let ` ≥ 3 and c ≥ 1. Then

vol
({

x ∈ B` | |x1| > c√
`−1

})
vol(B`)

≤ 2
c
· e−c2

2

Theorem: Unit Vector and Volume

Let ` ≥ 3, c ≥ 1 and a ∈ R` a unit vector
(‖a‖ = 1). Then we have:

vol
({

x ∈ B` | |〈a, x〉| > c√
`−1

})
vol(B`)

≤ 2
c
· e−c2

2

5.2 Dimension Reduction by Random Projections

It is possible to reduce the dimension of a set of points in a high-dimensional Euclidean space while
approximately preserving the distance between all pairs of points in the set. In many scenarios,
lower dimension data is easier to handle computationally.

Definition: Spherical Gaussian Distribution

An `-dimensional Gaussian distribution with mean µ ∈ R` and variance σ2 in each direction
is the probability distribution on R` with density

p(x) =
1

(2π)
`
2 · σ`

· exp
(
−‖ x− µ ‖2

2σ2

)

Note that the spherical Gaussian distribution is a special case of the multivariate normal distribution
where the coordinates are independent and have the same variance.

Theorem: Construction of Spherical Gaussian Distributions

The `-dimensional spherical Gaussian distribution with mean µ = (µ1, ..., µ`) ∈ R` and
variance σ2 in each direction can be created by drawing the coordinates xi of x = (x1, ..., x`)
independently according to a normal distribution with mean µi and variance σ2.

23

In a typical one-dimensional Gaussian distribution, most of the probability mass is near the mean.
This is not the case for high-dimensional spherical Gaussians because their probability mass is
concentrated in an annulus (or ’hill’) of radius σ2

√
` around the mean.

Theorem: Gaussian Annulus Theorem

Let b ≤
√
` and let x ∈ R` be drawn from an `-dimensional spherical Gaussian distribution

with mean µ = 0 and variance σ2 = 1. Then

Pr(
√
`− b < ‖x‖ <

√
`+ b) ≥ 1− 3e−cb2

where c > 0 is a constant that does not depend on ` and b.

The reduction mapping is used to map the high-dimensional data to a lower dimension.

Definition: Reduction Mapping

Let k, ` ∈ R with k ≤ `. The vectors
u1, ..., uk ∈ R` are drawn independently
from the `-dimensional spherical Gaussian
distribution with mean 0 and variance 1 in
each direction. Then we define the matrix
U as:

U :=
1√
k

uT
1
...

uT
k

 ∈ Rk×`

Then the mapping x 7→ Ux is the random
projection that is used for the dimension
reduction.

Theorem: Random Projection Theorem

Let k, ` ∈ R with k ≤ `.
For all x ∈ R` and all ε > 0 we have

Pr (|‖Ux‖ − ‖x‖| > ε‖x‖) ≤ 3e−cε2k

where U is the matrix from the reduction
mapping and c is the constant from the
Gaussian Annulus Theorem.

Theorem: Corollary from the Random Projection Theorem

Let k, ` ∈ R with k ≤ `. For all x, y ∈ R` and all ε ∈ (0, 1) we have

Pr ((1− ε)‖x− y‖ ≤ ‖Ux−Uy‖ ≤ (1 + ε)‖x− y‖) ≥ 1− 3e−cε2k.

Theorem: Johnson-Lindenstrauss Lemma

Let 0 < ε < 1 and k, `, n ∈N such that k ≥ 3
cε2 · ln n where c is the constant from the Gaussian

Annulus Theorem. Then for every set X ⊆ R` of size |X| = n we have

Pr (∀x, y ∈ X : (1− ε)‖x− y‖ ≤ ‖Ux−Uy‖ ≤ (1 + ε)‖x− y‖) ≥ 1− 3
2n

.

This Lemma describes the probability that the distance between two points from a set of points X is
still below a certain difference after the dimension reduction.

24

5.3 Eigenvalues and Eigenvectors

We do not repeat all the basics for Eigenvalues, Eigenvectors and diagonalisable matrices here. They
can be found in the Panikzettel for Linear Algebra.

Reminder: A matrix A ∈ Cn×n is diagonalisable if there are is a non-singular matrix U and a diagonal
matrix Λ such that U−1AU = Λ.

Theorem: Relation Between Diagonalisable Matrices and Eigenvectors

Let A ∈ Cn×n.
1. If U−1 AU = Λ where Λ = diag(λ1, ..., λn) then λ1, ..., λn is the spectrum (= set of

eigenvalues) of A. Moreover the columns u1, ..., un are the eigenvectors of A associated
with λ1, ..., λn.

2. If the preconditions a to d are met then U−1AU = Λ.
a) λ1, ..., λn are the eigenvalues of A
b) u1, ..., u1 is a basis of corresponding eigenvectors
c) U ∈ Cn×n is the matrix with columns u1, ..., un

d) Λ = diag(λ1, ..., λn)

Reminder: A matrix U ∈ Rn×n is orthogonal if
U−1 = UT (equivalently, if the columns of U
form an orthonormal basis or Rn)

Theorem: Properties of a symmetric matrix

Let A ∈ Rn×n be a symmetric matrix. Then
all eigenvalues of A are real and Rn has an
orthonormal basis consisting of eigenvec-
tors of A.

Theorem: Spectral Decomposition

Let A ∈ Rn×n be a symmetric matrix. Then
there is an orthogonal matrix U ∈ Rn×n

such that
A = UΛUT

where Λ is the diagonal matrix whose di-
agonal entries form the spectrum of A

5.3.1 Perron-Frobenius Theorem

Definition: Irreducible Matrix

We associate a graph GA with each matrix A = (Aij) ∈ Rn×n. The vertex set is V(GA) := [1, n]
and the edge set is is

E(GA) := {(i, j) | Aij 6= 0}.

The matrix A is irreducible if GA is strongly connected (= every vertex is reachable from every
other vertex).

25

https://panikzettel.philworld.de/la.pdf

Theorem: Perron-Frobenius

Let n ≥ 2 and let A ∈ Rn×n be non-negative and irreducible with spectral radius (= maximal
absolute value of an eigenvalue) ρ = ρ(A). Then

1. ρ is an eigenvalue of A of algebraic multiplicity 1.
2. For all eigenvalues λ 6= ρ of A it holds that ρ > |λ|. (Definition of spectral radius.)
3. There is unique eigenvector u ∈ Rn associated with ρ such that ||u|| = 1 and all entries

of u are positive. u is called right Perron vector of A.
4. There is a unique vector v ∈ R such that vT A = ρvT and ||v|| = 1 and all entries of v

are positive. v is called left Perron vector of A.

Definition: Permutation of a Matrix

Let A ∈ Rn×n. For a permutation π of
[1, n] we let Aπ be the matrix with entries
Aπ

ij := Aπ−1(i)π−1(j).

Definition: Reducible Matrix

Let A ∈ Rn×n. A is reducible if there is a
k ∈ [1, n− 1] and
• a matrix B ∈ Rk×k,
• a matrix B ∈ Rk×(n−k),
• a matrix C ∈ R(n−k)×(n−k) and
• a permutation π of [1, n] such that

Aπ =

(
B C
0 D

)
.

Theorem: Reducibility of Non-Negative Ma-
trices

Let I be the identity matrix. For every non-
negative matrix A ∈ Rn×n the following
properties are equivalent.
• A is irreducible.
• A is not reducible.
• (A + I)n−1 has only positive entries.

Theorem: Limit Theorem for Non-Negative
Matrices

Let n ≥ 2, let A ∈ Rn×n be non-negative
and irreducible with spectral radius ρ and
let u, v the the Perron vectors of A. Then

lim
k→∞

1
k

k

∑
i=1

Ai

ρi =
1
〈u, v〉u · v

T.

5.4 Power Iteration

The power iteration algorithm is used to approx-
imate an eigenvector of a matrix. It can only be
used if the two following assumptions are met.
Let A ∈ Cn×n be a matrix with spectrum λ1, ...λn

where |λ1| ≥ |λ2| ≥ ... ≥ |λn| and let Λ =

diag(λ1, ..., λn). We assume:

1. λ1 ∈ R≥0 and λ1 > |λ2|.
2. A is diagonisable.

The rate of convergence for the sequence (vk)k≥0
is determined by

|λ2|
λ1

= max
i≥2

|λi|
λ1

.

Algorithm: Power Iteration Algorithm

Input: Matrix A ∈ Cn×n, vector x ∈ Cn

Output: Vector v ∈ Cn

1: v0 ← x
‖x‖

2: k← 0
3: repeat
4: k← k + 1
5: vk ← Avk−1

‖Avk−1‖
6: until Sequence converges (up to the

required precision).
7: return vk

26

For the algorithm to work, the initial vector x cannot be orthogonal to the target eigenvector. When
choosing x randomly, however, the probability of x being orthogonal is small.

5.5 Principal Component Analysis

Let a1, ..., an ∈ R` be a set of data points. (Each entry of one of this data points is a feature.) Such sets
of data points are represented by a data matrix A ∈ Rn×` whose rows are aT

1 , ..., aT
n .

The data matrix is called centred if the mean of its data points is zero. Each data matrix can be
centered by replacing each data point ai by

a′i := ai −
n

∑
j=1

aj = 0

5.5.1 PCA-Transformation

Definition: PCA-Transformation

Let A ∈ Rn×` be a data matrix with rows aT
1 , ..., aT

n . A PCA-transformation of A is an
orthogonal matrix U ∈ R`×` with columns u1, ..., u` satisfying

uj = argmax
x∈R`

||x||=1
x⊥u1,..,uj−1

n

∑
i=1
〈ai, x〉2.

The lines Pi = span(ui) are called the principal components of A with respect to U.

5.5.2 Best-Fit Subspaces

Definition: Best-Fit Subspace

Let 1 ≤ k ≤ ` and A ∈ Rn×` be the centred
data matrix with rows aT

1 , ..., aT
n .

A best-fit k-dimensional subspace for the data
is a k-dimensional linear subspace X ⊆ Rl

such that the projection of a1, ..., an into X

has maximum variance.

Theorem: PCA and Best-Fit Subspaces

Let A ∈ Rn×` and let U be its PCA-
transformation. Then for every k ∈ [1, `]

Uk = span(u1, ..., uk)

is a best fit subspace for A.

Or, a best-fit k-dimensional subspace is a sub-
space X = span(x1, ..., xk) where x1, ..., xk is an
orthonormal system maximizing

n

∑
i=1

k

∑
j=1
〈ai, xj〉2.

This is used for dimension reduction because
the projection of data into its best-fit subspace is
an optimal k-dimensional approximation to the
original data.

27

5.5.3 The Covariance Matrix and Spectral Decomposition

Definition: Covariance Matrix

Let A ∈ Rn×` be a data matrix.
The covariance matrix of A is:

C := AT A ∈ R`×`.

All covariance matrices C are symmetric and pos-
itive semi-definite. Thus, all their eigenvalues
are non-negative real numbers.
It follows from the Spectral Decomposition Theo-
rem that R` has an orthonormal basis consisting
of eigenvectors of C.

Theorem: PCA via Spectral Decomposition of the Covariance Matrix

Let A ∈ Rn×` be a data matrix and C = AT A the corresponding covariance matrix. If the
following prerequisites are met, U is a PCA-transformation of A:
• λ1 ≥ λ2 ≥ ... ≥ λ` are the eigenvalues of C
• u1, ..., u` is an orthonormal basis of R`, such that uj is an eigenvector of C associated

with λj.
• U ∈ R`×` is the matrix with columns u1, ..., u`.

5.6 Spectral Clustering

The objective of a clustering algorithm is to partition the data into clusters in such a way that

1. the points within each cluster are similar
2. the points in distinct clusters are dissimilar

The k-means clustering algorithm focuses on goal 1 and the spectral clustering algorithm focuses on
goal 2. This is useful in situations like they are described here.
TL;DR: Spectral clustering should be used in situations where the points within each cluster are not
particularly close together, but the clusters are well-separated (for example, they may be stretched
along a line or a circle).

Definition: Similarity Measure

Let X be a set of data points. A similarity
measure is a symmetric function

s : X× X → R≥0

Definition: Similarity Matrix

Let s be a similarity measure and n = |X|.
Then, a similarity matrix is a matrix S ∈
Rn×n with Sij := s(i, j).

The objective for spectral clustering is to partition X into k non-empty clusters C1, ..., Ck in a way
that minimizes the overall similarity between points in distinct clusters.

28

https://towardsdatascience.com/spectral-clustering-82d3cff3d3b7

Definition: Minimum Cut

Given a similarity matrix S and a partition
C1, ..., Ck, the minimum cut is defined as

mincut(C1, ..., Ck) :=
k

∑
p=1

∑
i∈Cp,j/∈Cp

Si,j

Definition: Balanced Cut

Given a similarity matrix S and a partition
C1, ..., Ck, the balanced cut is defined as

balcut(C1, ..., Ck) :=
k

∑
p=1

1
|Cp| · ∑

i∈Cp,j/∈Cp
Si,j

The clustering that results from minimizing the minimum cut favors very small or very large clusters
(often obtained by choosing all clusters but one of size 1). Thus, the balanced cut is used instead.
The only remaining drawback is that minimizing the balanced cut is computationally hard.

Definition: Positive Semi-Definite Matrices

A matrix A ∈ Rn×n is positive semi-definite (p.s.d.) if all its eigenvalues are non-negative
numbers.

Definition: The Laplacian

Let S be a similarity matrix.
The Laplacian L of S is the matrix

L = D− S ∈ Rn×n

where D is the diagonal matrix with entries
Di,i = ∑n

j=1 Si,j.
The Laplacian is always p.s.d.

Theorem: Connection with Cuts

Let C1, ..., Ck be a partition of [n] and let
U ∈ Rn×k be the matrix with entries

Ui,p =

1√
|Cp|

if i ∈ Cp

0 otherwise

Then balcut(C1, ..., Ck) = trace(UT LU).

5.6.1 Generalization of the Spectral Clustering

Definition: Partition Matrix

A matrix U ∈ Rn×k is a partition matrix if
U has exactly k distinct rows.
C1, ..., Ck is the partition associated with U
if each part corresponds to exactly one set
of equal rows.

Theorem:

Let U ∈ Rn×k be an orthogonal partition
matrix and let C1, ..., Ck be the partition of
[n] associated with U. Then

balcut(C1, .., Ck) = trace(UT LU).

Thus, finding a partition C1, ..., Ck that minimizes balcut(C1, ..., Ck) is equivalent to finding an
orthonormal partition matrix U ∈ Rn×k that minimizes trace(UT LU).

5.6.2 Relaxation of the Spectral Clustering

The idea is to compute an arbitrary orthonormal U instead of a partition matrix (feasible). Then,
find a partition matrix close to the orthonormal matrix U and return the associated partition.

29

Theorem:

Let U ∈ Rn×k be an orthonormal matrix whose columns are eigenvectors to the k smallest
eigenvalues of L. Then

trace(UT LU) ≤ trace(VT LV)

for all orthonormal matrices V ∈ Rn×k.

Algorithm: Spectral Clustering

Input: Similarity matrix S ∈ Rn×n, number k of clusters
Output: Clusters C1, ..., Ck

1: Compute Laplacian L of S
2: Compute orthonormal matrix U ∈ Rn×k whose columns are eigenvectors of the k smallest

eigenvalues of L
3: Let x1, ..., xn ∈ Rk be the rows of U
4: Cluster x1, ..., xn using k-means yielding clusters C1, ..., Ck

Intuitively, if the vectors in each of the clusters Cp are close together then we can find a partition
matrix Û with an associated partition C1, ..., Ck such that Û is close to U and following ÛT LÛ is
close to UT LT.

6 Markov Chains

Definition: Transition Matrix

The transition matrix of a Markov chain Q
is a stochastic matrix Q ∈ Rn×n, where qij
is the probability of Q going from state i
to state j.

Definition: Graph of a Markov Chain

The graph of a Markov chain Q is

GQ = ([n], { (i, j) | qij > 0 }).

Q is connected if GQ is strongly connected.

Definition: Probability distributions over Markov chains

The initial probability distribution of a Markov chain is described by p0. The probability
distribution after t steps is pt = p0Qt. The average probability distribution after t steps is
at =

1
t ∑t

s=1 ps.

Theorem: Fundamental Theorem of Markov Chains

For every connected Markov chain Q there is a unique vector, called stationary distribution,
π ∈ R1×n such that πQ = π.
Moreover, for every initial distribution p0 ∈ R1×n:

lim
t→∞

at = π

30

Theorem: Characteristic of transition matrices

If Q is the transition matrix of a connected Markov chain, Q has the spectral radius 1.

Definition: Aperiodic and Ergodic

A Markov chain Q is aperiodic if the greatest common divisor of the length of all cycles in GQ
is 1.
A Markov chain is ergodic if it is connected and aperiodic.

Theorem: Ergodic Markov Chains

For an ergodic Markov Chain Q, the sta-
tionary distribution (resulting from an ar-
bitrary starting distribution p0) is

lim
t→∞

pt = π

We can convert every Markov chain into an er-
godic one by using the following theorem.

Theorem: Ergodic Converstion

Let I be the (n × n) identity matrix and
let Q be a connected Markov chain and
0 < α < 1. A Markov chain with transition
matrix

αQ + (1− α) · I

has the same stationary distribution as Q
and is ergodic.

6.1 Markov Chain Monte Carlo Method

We want to sample from a probability space (U,P), but we only know P up to an unknown
constant Z as D = Z · P . The idea is to design a Markov chain over U with stationary distribution
P . This can be done by either Metropolis-Hastings or Gibbs sampling.

Definition: Metropolis-Hastings Sampling

Let (U,D) be a probability space with G a connected undirected graph with maximum degree
∆ and V(G) = U.
Then, Q is the Metropolis-Hastings Markov Chain if it has transition matrix:

quv =

1
∆ if uv ∈ E(G) and D(v) ≥ D(u)
1
∆ ·
D(v)
D(u) if uv ∈ E(G) andD(v) < D(u)

1−∑v′∈N(u) quv′ if u = v

0 otherwise

31

Algorithm: Metropolis-Hastings Sampling

Input: Probability space (U,D), connected undirected graph G with maximum degree ∆ and
V(G) = U, u ∈ U current state
Output: v ∈ U next state sampled from the Metropolis-Hastings Markov Chain

1: b←
{

1 with probability |N(u)|
∆

0 otherwise
2: if b = 1 then
3: choose a neighbour v′ ∈ N(u) in G uniformly at random
4: if D(v′) ≥ D(u) then
5: v← v′

6: else

7: v←
{

v′ with probability D(v′)/D(u)
u with probability 1−D(v′)/D(u)

8: end if
9: else

10: v← u
11: end if
12: return v

Theorem: Metropolos-Hasings Sampling

The stationary distribution of the Metropolis-Hastings Markov Chain is P .

Definition: Gibbs Sampling

Let (U = Dl ,D) be a probability space with D finite.

Then, Q is the Gibbs Markov Chain if it has transition matrix:

quv =

1
l ∑l

i=1 P(ui|u1, . . . , ui−1, ui+1, . . . , ul) if u = v
1
lP(vi|u1, . . . , ui−1, ui+1, . . . , ul) if u and v differ in exaclty one i ∈ [l]

0 otherwise

Algorithm: Gibbs Sampling

Input: Probability Space (U = Dl ,D) with D finite, u ∈ U the current state.

Output: Next state v ∈ U sampled from the Gibbs Markov Chain

1. Choose i ∈ [l] uniformly at random
2. Compute Zu,i = ∑v∈DD(u1, . . . , ui−1, v, ui+1, . . . , ul)

3. Choose vi ∈ D with probability

D(u1, . . . , ui−1, v, ui+1, . . . , ul)

Zu,i

4. Return v = (u1, . . . , ui−1, vi, ui+1, . . . , ul)

32

Theorem: Gibbs Sampling

The stationary distribution of the Gibbs Markov chain is P .

6.1.1 Bounding the Mixing Time

We need to make sure that the Markov chain converges quickly to the stationary distribution. That
is, we need to bound the convergence rate (i.e. mixing time) of the chain.
This is usually difficult, and in fact, many Markov chains converge very slowly to their stationary
distribution. But there are cases in which it is possible to prove a fast convergence.

Definition: Total Variation Distance

The total variation distance between two probability distributions P ,P ′ over the same state
space U is

‖P − P ′‖TV :=
1
2 ∑

u∈U

|P(u)−P ′(u)| = max
A⊆U
|P(A)−P ′(A)|

Theorem: Jerrum and Sinclair

The mixing time of the Markov chain for uniformly sampling matchings of a graph G is
polynomial in the size of G.

6.2 Page Rank

A search engine has two tasks:

1. Find the set of web pages containing the query term.
2. Rank the web pages and return them in a ranked order.

This section will discuss how task 2 can be completed.

6.2.1 Equivalent Basic Ideas of Page Rank

Idea 1:
A web page is important if many links point to
it. However, links coming from important web
pages should carry higher weights.

Idea 2:
If we take a random walk on the web graph, the
pages we visit more often are more important.

6.2.2 Web Graph as Markov Chain

The web graph Gweb is defined as follows. The
web pages are numbered 1, ..., n. Let E(Gi) :=
{(i, j) | page i has link to page j}.
Let Qweb be the Markov chain of the random
walk on Gweb where each edge has the same
weight. The transition matrix is then Qweb =

qij ∈ Rn×n with

qij =

{
1

deg+(i)
if (i, j) ∈ E(Gweb)

0 otherwise

33

6.2.3 Implementation of the Page Rank

Use a non-negative weight vector w = (w1, ..., wn) ∈ R1×n where wi measures the importance of
page i. We normalize the vector so that ∑i wi = 1.
At the beginning, all pages have the same weight wi =

1
n . The goal is to assign more weight to

pages with higher in-degree. To do this we repeatedly update w as follows

w← wQweb

The resulting sequence w0, w1, ... is exactly the sequence p0, p1 of probability distributions on the
Markov Chain Qweb when it is started with the initial distribution p0 = w0 = (1

n , ..., 1
n).

If the Markov chain Qweb is ergodic this sequence converges to the stationary distribution π. In
practice, however, Qweb is not ergodic because the web graph is not connected. In this case, a
technique called random restarts is used. At any point with a small probability, the chain jumps to
an arbitrary vertex instead of following an edge.

7 Algorithms for Massively Parallel Systems

7.1 Map-Reduce Programming Model

The Map-Reduce model is a programming model for data analysis on a massively parallel system.
A Map-Reduce program computation consists of three phases:

Map: A Map function receives one key-value pair and emits zero or more key-value pairs. The
function is executed for every input key-value pair in parallel on the system.

Shuffle: All emitted key-value pairs are sorted by their key component.

Reduce: A Reduce function receives all key-value pairs for one key and emits zero or more
key-value pairs. The function is executed for every key-value in parallel on the system.

The user has to provide the Map and Reduce function. The system takes care of the rest. Multiple
computations can be chained together, resulting in a Map-Reduce process.

7.2 Relational Algebra in Map-Reduce

For a given relation R with schema R(A1, . . . , Al) a tuple t is stored as akey-value pair (R, t).

The fundamental operations of relational algebra can easily be implemented as Map-Reduce
programs. The implementations are given for exemplary cases, i.e. input schemata and operation
parameters.

Algorithm: Projection

Input: Relation R with schema R(A, B, C)

Output: Q = πA,C(R)

Map: On input (R, (a, b, c)) emit ((a, c), 1).

Reduce: On input ((a, c), values) emit (Q, (a, c)).

34

Algorithm: Intersection

Input: Relations R and S with the same attributes

Output: Q = R∩ S

Map: On input (R, t) emit (t, R), on input (S, t) emit (t, S).

Reduce: On input (t, values) emit (Q, t), if values contains R and S.

Algorithm: Join

Input: Relation R with schema R(A, B) and relation S with schema S(B, C)

Output: Q = R ./ S

Map: On input (R, (a, b)) emit (b, (R, a)), on input (S, (b, c)) emit (b, (S, c)).

Reduce: On input (b, values) emit (Q, (a, b, c)) for all (R, a), (S, c) ∈ values.

Algorithm: Grouping and Aggregation

Input: Relation R with schema R(A, B, C)

Output: Relation Q resulting by groupingR by attribute A and take the average over attribute
C

Map: On input (R, (a, b, c)) emit (a, c).

Reduce: On input (a, values) compute the average c? of the entries c ∈ values and emit
(Q, (a, c?)).

7.3 Matrix Multiplication

First, we take a look at matrix-vector multiplication. The first variant is used when vector v fits into
main memory. The second variant is used when v exceeds the main memory.

Algorithm: Matrix-Vector Multiplication (1)

Input: v ∈ Rn A ∈ Rm×n stored as:
• v in the main memory of each worker
• ((i, j), aij))

Output: Av ∈ Rn

Map: On input ((i, j), aij)) emit (i, aijvj).

Reduce: On input (i, values) emit (i, ∑v∈values v).

The second variant for larger than main memory vectors v works with a partition of [n], which is
used to partition v into segments and A into vertical stripes. Each Map worker should only get
key-value pairs that are in the same stripe, so it can keep the same segment of v loaded.

35

Algorithm: Matrix-Vector Multiplication (2)

Input: v ∈ Rn A ∈ Rm×n stored as:
• v partitioned into k segments
• ((i, j), aij)) partitioned into vertical stripes

Output: Av ∈ Rn

Map: On input ((i, j), aij)) if aij is in stripe k, load section k of v into memory and emit
(i, aijvj).

Reduce: On input (i, values) emit (i, ∑v∈values v).

Algorithm: Two Round Matrix Multiplication

Input: A ∈ R`×m, B ∈ Rm×n stored as:
• (A, (i, j, aij))

• (B, (j, k, bjk))

Output: C = AB ∈ R`×n

First Map: On input (A, (i, j, v)) emit (j, (A, i, v)) on input (B, (j, k, w)) emit (j, (B, k, w)).

First Reduce: On input (j, values) emit ((i, k), vw) for all (A, i, v), (B, k, w) ∈ values such that
vw 6= 0.

Second Map: The identity function: on input ((i, k), x) emit ((i, k), x).

Second Reduce: On input ((i, k), values) compute the sum x? of all x ∈ values and emit
(C, (i, k, x?)).

The idea of the two round algorithm is to look at matrix multiplication from a relational algebra
perspective. Both matrices are stored as ternary relations. The first Map-Reduce round joins both
relations and simultaneously computes all multiplications. The second Map-Reduce round groups
all products of the first round by their position in the output matrix and computes a sum.

Algorithm: One Round Matrix Multiplication

Input: A ∈ R`×m, B ∈ Rm×n stored as:
• (A, (i, j, aij))

• (B, (j, k, bjk))

Output: C = AB ∈ R`×n

Map: On input (A, (i, j, v)) emit ((i, k), (A, j, v)) for k ∈ [n], on input (B, (j, k, w)) emit
((i, k), (B, j, w)) for i ∈ [l].

Reduce: On input ((i, k), values) compute the sum x of all vw for (A, j, v), (B, j, w) ∈ values
and emit (C, (i, k, x)).

The one round algorithm is a clever way to compute the join in one Map phase and the grouping
and sum in one reduce phase.

36

7.4 Analysis of Map-Reduce Algorithms

Definition: Cost Measures

• Wall-clock time: Total time for the MR-process to finish.
• Number of rounds: Number of MR-rounds in the process.
• Communication cost: Sum of input sizes to all phases.
• Replication rate: Number of key-value pairs produced by all map tasks divided by the

input size.
• Maximum load: Maximum input length of reduce tasks.

Wall-clock time: This is the ultimate parameter we are interested in, but it is heavily system-
depended and requires complicated analysis.

Number of rounds: This number is a reasonable and important cost factor but has to be viewed in
conjunction with other measures to be meaningful.

Communication cost: In practical settings with large amounts of data the execution cost is domi-
nated by the cost of transferring the data. Since each output (except for the final one which is small)
is input to the next task, outputs can be ignored.
The input size can be measured in bits or more abstractly such as number of tuples.
The measure only works for algorithms that balance the load ”reasonably”. A MR process that puts
all computations into one node would minimize the communication cost but is of course pointless.

Replication rate: This measure puts the communication cost into perspective and only works for
single-round MR-processes.

Maximum load: Measures load balancing and has an impact on the execution time of reducers.

7.4.1 Analysis of Matrix Multiplication

We assume the non-zero entries of the two matrices are randomly distributed. Formally:

• P(aij 6= 0) = p independently for all i, j.
• P(bjk 6= 0) = q independently for all j, k.

for (small) p, q with 0 ≤ p, q ≤ 1.

Theorem: Analysis of the two-round algorithm

• Expected communication cost: 2plm + 2qmn + 2pqlmn.
• Maximum load in the first round: pl + qn, with high probability below (1 + ε)(pl + qn).
• Maximum load in the second round: pqm, with high probability below (1 + ε)(pqm).

Theorem: Analysis of the one-round algorithm

• Expected communication cost: plm + qmn + (p + q)lmn.
• Maximum load: pm + qm, with high probability below (1 + ε)(pm + qm).

We generalize the single round matrix multiplication algorithm by dividing the matrices in s stripes.
We define a mapping h : [n]→ [s] that assigns each column/row of a matrix to a stripe.

37

Algorithm: Generalized Single Round Algorithm

Input: A ∈ Rn×n, B ∈ Rn×n stored as:
• (A, (i, j, aij))

• (B, (j, k, bjk))

Output: C = AB ∈ Rn×n

Map: On input (A, (i, j, v)) emit ((h(i), u), (A, i, j, v)) for u ∈ [s], on input (B, (j, k, w)) emit
((t, h(k)), (B, j, k, w)) for t ∈ [s].

Reduce: On input ((t, u), values) for all i ∈ h−1(t) and k ∈ h−1(u) compute the sum cik of all
vw for (A, i, j, v), (B, j, k, w) ∈ values and emit (C, (i, k, cik)).

Theorem: Analysis of the generalized single round algorithm

Worst case:
• Replication rate: s.
• Communication cost: 2n2 + 2sn2 = O(sn2).
• Each reducer gets all entries of n/s rows and n/s columns. Thus the maximum load is 2n2

s .

Average case:

• Replication rate: s.
• Communication cost: (p + q)n2 + s(p + q)n2 = O(s(p + q)n2).
• Each reducer gets all non-zero entries of n/s rows and n/s columns. Thus the maximum

load is (p+q)n2

s .

7.5 Multiway Joins in Map Reduce

The task is to compute the natural join of multiple relations.

Definition: Multiway Natural Join

Input: R1, . . . ,Rl with:

Output: Q = R1 .// Rl

Further parameters:

• Ri(Ai1, . . . , Aiki) schema of Ri
• { A1, . . . , Ak } set of all attributes
• Vj domain of attribute Aj

The Hypercube algorithm has the following parameters:

• sj ∈N share of the attribute Aj

• ∏k
j=1 sj = s number of reducers

• h1, . . . , hk independently chosen hash functions hj : Vj → [sj]

38

Algorithm: Map function of Hypercube

Input: (Ri, (a1, . . . , aki))

Output: (p, values)

On input (Ri, (a1, . . . , aki)), emit

((p1, ..., pk), (Ri, (a1, ..., aki)))

such that
• pj ∈ [sj] for all j ∈ [k]
• pj = hj(aj′) for all j ∈ [k], j′ ∈ [ki] such

that Aij′ = Aj

Algorithm: Reduce function of Hypercube

Input: (p, values)
Output: (Qi, (a1, . . . , ak))

Compute

Q(p := R1(p) .// R`(p)

where

Ri(p) := {t | (Ri, t) ∈ values}

and emit all pairs (Q, t) for t ∈ Q(p)

Theorem: Analysis of the Hypercube Algo-
rithm

For every i ∈ [1, `] we have Idx(i) :=
{j ∈ [1, k] | Aj ∈ {Ai1, ..., Aiki}} and
mi := |Ri|∀i ∈ [1, `].
1. The replication rate of the Hypercube

algorithm is:

`

∑
i=1

mi · ∏
j∈[k]\Idx(i)

sj

`

∑
i=1

mi

2. The expected load of the algorithm (over
the random choices of the hash func-
tions) is

∑
i∈[l]

mi

∏j∈Idx(i) sj

3. With a high probability, the maximum
load is

O
(

∑
i∈[`]

mi

minj∈Idx(i) sj

)

The base idea is to divide each attribute into shares using the hash functions (similar to the stripes
in matrix multiplication) and let the reducer perform the join on a small subset according to these
shares. The number of shares per attribute is a vital parameter and should be chosen in a way that
minimizes the expected load.

7.5.1 Skew-Free Relations

Skew-free relations have a special property regarding the maximum load.

Definition: Frequency of a Tuple

Let i ∈ [`] and J ⊆ Idx(i). The frequency of an (Aj | j ∈ J)-tuple t in Ri is the number of
tuples t′ ∈ Ri whose projection on (Aj | j ∈ J) is t.

39

Definition: Skew-Free Relation

A relation Ri is skew-free with respect to
s1, ..., sk, if for every set J ⊆ Idx(i) and for
every (Aj | j ∈ J)-tuple t, the frequency of
t in Ri is at most

mi

∏j∈J sj

Theorem: Maximum Load of Skew-Free Rela-
tions

If the relations R1, ...,R` are skew-free
with respect to s1, ..., sk then with a high
probability the maximum load is

O
(

∑
i∈[`]

mi

∏j∈Idx(i) sj
(log(s))k

)

8 Streaming Algorithms

Sometimes the amount of data is too much to store it or there is no need to store the data after
processing. Therefore, the goal is to design efficient (sublinear space, online, real-time) algorithms
for data analysis tasks.

The formal model for this setting is defined as follows. The data items are from an universe U with
N := |U|. Sometimes the assumption U = {0, . . . , N − 1} is made. a = a1, ..., an is the input stream
with ai ∈ U.
The length n of the data stream is not known to the algorithm in advance. The most interesting
property is the space usage of the algorithm. Typically, an algorithm should have the following
space usage:

polylog(n + N) =
⋃
k≥1

log(n + N)k

where the assumption n + N ≥ 2 is made to avoid edge cases.

8.1 Sampling from Streams

The task is to pick elements ai uniformly at random from the elements of the stream. This is trivial
if n is known in advance. But if n is unknown, the following algorithm is used.

40

Algorithm: Simple Sampling Algorithm

Input: Stream a1, ..., an

Output: A uniformly picked element from
the stream.

1: i← 0
2: while not end of stream do
3: i← i + 1
4: sample← ai with probability 1

i
5: end while
6: return sample

This time, we want to sample k elements uni-
formly. Note that there are (n

k) possible reser-
voirs.

Algorithm: Simple Sampling Algorithm

Input: Stream a1, ..., an and k ≤ n
Output: k uniformly picked elements

from the stream.
1: for i = 1, ..., k do
2: sample[i]← ai
3: end for
4: while not end of stream do
5: i← i + 1
6: replace ←{

true with probability k
i

f alse otherwise
7: if replace then
8: choose j uniformly at random

from [k]
9: sample[j]← ai

10: end if
11: end while
12: return sample

The space complexity of the algorithm is O(log n + k · log N).

8.2 Hash Functions

Definition: Hash Function

A hash function h on a universe U is a function from U to a set T (usually an initial segment
of the natural numbers). h is assumed to be or at least look random.
Formally, consider a probability distribution on the space of all functions h : U→ T. If it is
uniform, the hash function is truly random.

Most analyses of algorithms based on hashing assume that we have truly random hash functions.
However, unless the size N of the universe is small, in which case we normally need no hashing in
the first place, this assumption is unrealistic.

8.2.1 True Randomness

Suppose we choose h uniformly at random from the class TU of all functions from U to T (|T| = M).
The following properties show the use of true randomness:

• For all x ∈ U, y ∈ T we have

Pr
h∈TU

((h(x) = y) =
1
M

41

• For all distinct x, x′ ∈ U we have

Pr
h∈TU

(h(x) = h(x′)) =
1
M

• For all distinct x1, ..., xk ∈ U and all y1, ..., yk ∈ T we have

Pr
h∈TU

(h(x1) = y1 ∧ ...∧ h(xk) = yk) =
1

Mk

Since randomness is hard to obtain, true randomness is unrealistic. Generating a random function
from {0, ..., N − 1} → {0, ..., M − 1} requires Θ(N · log M) random bits. Storing it needs also
Θ(N · log M) bits. Since N is typically very large, the space requirement alone is prohibitive.

8.2.2 Families of Hash Functions

By fixing a small family H of hash functions from U to T and considering the uniform distribution
on this family one can obtain feasible distributions of hash functions.

Definition: Universal Hashing

A family H of hash functions from U to T is universal if for all distinct x, x′ ∈ U

Pr
h∈H

(h(x) = h(x′)) ≤ 1
|T|

8.2.3 Signatures

We want to assign k-bit signatures to the elements of an n-element subset S ⊆ U in such a way that
we have few collisions.

Definition: Number of Collisions

For a function h : U→ T and a set S ⊆ U we let

coll(h, S) := |{{x, x′} | x, x′ ∈ S such that x 6= x′ and h(x) = h(x′)}|

denote the number of collisions of h on S.

Theorem: Expected Number of Collisions

Let H be a universal family of hash functions from U to {0, ..., 2k − 1}. Then for every δ > 0
and every set S ⊆ U of cardinality |S| = n,

Eh∈H(coll(h, s)) =
n(n− 1)

2k+1 and Pr
h∈H

(
coll(h, S) ≥ n2

δ2k+1

)
≤ δ.

42

Theorem:

Let n ∈N and δ > 0. Let H be a universal family of hash functions from U to {0, ..., 2k − 1}
where k ≥ 2 log n + log 1

δ − 1. Then for every set S ⊆ U of cardinality |S| ≤ n,

Pr
h∈H

(coll(h, S) ≥ 1) ≤ δ.

8.2.4 Strongly k-universal Families

Definition: k-universal and strongly k-universal families

Let k ≥ 2 and let H be a family of hash functions from U to T.
1. H is k-universal if for all distinct x1, ..., xk ∈ U

Pr
h∈H

(h(x1) = h(x2) = ... = h(xk)) ≤
1

|T|k−1

2. H is strongly k-universal if for all distinct x1, ..., xk ∈ U and all y1, ..., yk ∈ T

Pr
h∈H

(h(x1) = y1 ∧ ...∧ h(xk) = yk) =
1
|T|k

Theorem: Alternative Characterization of Strongly k-Universal Families

Let 2 ≤ k ≤ |U| and let H be a family of hash functions from U to T. Then H is strongly
k-universal if and only if it has the following properties.

1. k-independence: For all distinct x1, ..., xk ∈ U and all y1, ..., yk ∈ T

Pr
h∈H

(
k∧

i=1

h(xi) = yi

)
=

k

∏
i=1

Pr
h∈H

(h(xi) = yi).

2. Uniformity: For all x ∈ U and y ∈ T

Pr
h∈H

(h(x) = y) =
1
|T|

8.2.5 Construction of Strongly k-Universal Families

The following steps are executed to construct a strongly k-universal family.

1. Choose a prime power q ≥ N and let Fq denote the field with q elements (unique up to
isomorphism).

2. Fix an arbitrary injection g1 : U→ F1 and an arbitrary bijection g2 : Fq → {0, ..., q− 1}.
3. For a = (a0, ..., ak−1) ∈ Fk

q let pa : Fq → Fq be the polynomial function

pa(x) = a0 + a1x + a2x2 + ... + ak−1xk−1

and let fa : U→ {0, ..., q− 1} be the function g2 ◦ pa ◦ g1.

43

4. Define functions ha : U→ {0, ..., M− 1} by: ha(x) := fa(x) mod M
5. Let Hk

q.M := {ha | a ∈ Fk
q}

Theorem: Special Strongly k-universal Families

The family Hk
q := { fa | a ∈ Fk

q} of hash functions from U to {0, ..., q − 1} is strongly k-
universal.

If M divides q, then the family Hk
q,M is strongly k-universal.

Even if M does not divide q the family Hk
q,M is close to strongly k-universal as long as M� q.

Theorem: Properties of Hk
q,M-families

For all M the family Hk
q,M satisfies the following two conditions.

1. Independence: For all distinct x1, ..., xk ∈ U and all y1, ..., yk ∈ {0, ..., M− 1}

Pr
h∈H

(
k∧

i=1

h(xi) = yi

)
=

k

∏
i=1

Pr
h∈H

(h(xi) = yi).

2. Almost Uniformity: For x ∈ U and all y ∈ {0, ..., M− 1}∣∣∣∣ Pr
h∈H

(h(x) = y)− 1
M

∣∣∣∣ ≤ 1
q

.

8.3 Counting Distinct Elements

We have a universe U of size |U| = N and a data stream a1, ..., an of items from U. The task is to
count the number of distinct elements in the stream a1, ..., an. While there are obvious solutions
using space O(N) or space O(n log N), this problem cannot be solved exactly in space < min{N, n}.

8.3.1 Approximately Counting Distinct Elements

While the linear space lower bound for exact
counting is prohibitive for very large N and n,
for many applications, it is sufficient to count
the number of distinct elements in a data stream
approximately.
We assume that the elements a1, ..., an are chosen
uniformly at random from U. For a > 0 let

zeroes(a) = max{i | 2i divides a}

be the number of trailing zeroes the binary rep-
resentation of a.

Algorithm: ZCount

Input: Stream a.
Output: Estimator for the number of ele-

ments in the stream.
1: z← 0
2: while not end of stream do
3: a← next stream element
4: if zeroes(a) > z then
5: z← zeroes(a)
6: end if
7: end while
8: return 2z+ 1

2

44

8.3.2 The Flajolet-Martin Algorithm

Let H be a strongly 2-universal family of hash function from U to [M] where M is the first power
of 2 greater than or equal to N.

Algorithm: FMCount

Input: Stream a and 2-universal family of
hash functions H.

Output: Estimator for the number of ele-
ments in the stream.

1: Draw h uniformly at random from H
2: z← 0
3: while not end of stream do
4: a← next stream element
5: if zeroes(h(a)) > z then
6: z← zeroes(h(a))
7: end if
8: end while
9: return 2z+ 1

2

The algorithm needs O(log N) memory space.

Theorem: Approximation Guarantee of FM-
Count

Let d = d(a1, ..., an) be the number of dis-
tinct elements in the input stream d∗ =

d∗(h, a1, ..., an) be the estimator returned
by the FMCount algorithm. Then

Pr
h∈H

(
d∗ ≤ 1

3
d
)
≤
√

2
3

Pr
h∈H

(d∗ ≥ 3d) ≤
√

2
3

.

This initial confidence bound is not great but can
be improved by using the median trick which is
implemented as the MCount(k)-algorithm.

Algorithm: MCount(k)

For a k ≥ 1:
1. Run 2k − 1 copies of FMCount in par-

allel with hash functions h1, ..., h2k−1
drawn independently from a family of
hash functions H.

2. Let d1, ..., d2k−1 be the resulting estima-
tors for the number d of distinct ele-
ments in the input stream.

3. Return the median d∗ of d1, ..., d2k−1.

Theorem: Approximation Guarantee of
MCount(k)

Let d = d(a1, ..., an) be the number of dis-
tinct elements in the input stream. For
every δ > 0 there exists a k = O(ln(1

δ))

such that the estimator d∗ returned by
MCount(k) satisfies

Pr
(

d
3
< d∗ < 3d

)
≥ 1− δ

The MCount(k) algorithm needs O(k · log N) memory space.

8.4 Frequency Moments

Let a = a1, .., an be a data stream consisting of elements from U and let u ∈ U.

45

Definition: Frequency and Frequency Moments

The frequency of u in a is
fu(a) := |{i ∈ [n] | ai = u}|.

Let p ≥ 0 be real and non-negative. The pth frequency moment of a is

Fp(a) := ∑
u∈U

(fu(a))p.

For the case p = 0 we restrict the sum to strictly positive fu.

We can interpret p
√

Fp := ‖ f ‖p as the Lp-norm of f .

It is possible to compute the average variance using frequencies. Assume the elements from the
stream are being chosen uniformly at random. Then the expected frequency is

E(fu) =
n

∑
i=1

1
N

=
n
N

Following from this the average variance is

1
N ∑

u∈U

E(fu − E(fu − E(fu))
2 =

1
N

F2 −
n2

N2

8.4.1 An Estimator for Fk

Let k ∈ with k ≥ 2 and let a = a1, ..., an be the
input stream. Then the estimator Ak is picked as
follows.

1. Pick an index i ∈ [n] uniformly at random.
2. Let r := |{j ≥ i | aj = ai}|.
3. Let Ak := n(rk − (r− 1)k).

Then, E(Ak) = Fk

Algorithm: AMS-Estimator

Input: Stream a and k ∈N.
Output: Estimator for Fk.

1: i = 0
2: while not end of stream do
3: i← i + 1
4: with probabiliy 1

i do
5: a← ai
6: r ← 0
7: if ai = a then
8: r ← r + 1
9: end if

10: end while
11: return i(rk − (r− 1)k)

46

8.4.2 An Estimator for F2

To estimate F2, we use the Tug-of-War algorithm.
Let H be a strongly 4-universal family of hash
functions from U to {−1, 1}.

Algorithm: Tug-of-War

Input: Strongly 4-universal hash family
H.

Output: Estimator for F2.
1: draw h uniformly at random from H
2: x ← 0
3: while not end of stream do
4: a← next element from stream
5: x ← x + h(a)
6: end while
7: return x2

Algorithm: Avg-ToW(k)

Input: Strongly 4-universal hash family
H.

Output: Estimator for F2.
1: draw h1, ..., hk independently from H
2: for i = 1, ...k do
3: xi ← 0
4: end for
5: while not end of stream do
6: a← next element from stream
7: for i = 1, ..., k do
8: xi ← xi + hi(a)
9: end for

10: end while
11: return 1

k ∑k
i=1 x2

i

Let B be the estimator returned by the Tug-of-
War algorithm. Then

E(B) = F2 and Var(B) ≤ 2 · F2
2 .

There is a variation of the Tug-of-War algorithm
called Avg-ToW(k).

Theorem: Precision of Avg-ToW(k)

Let ε, δ > 0, k = d 2
ε2δ
e and let B be the

estimator returned by Avg-ToW(k). Then
E(B) = F2 and

Pr(|B− F2| < εF2) > 1− δ.

8.5 Sketching

In our current setting, data is stored in a long vector that we want to query. A data stream contains
a sequence of updates to the vector. Our goal is to obtain a sketch of the vector, i.e. a space-efficient
summary that enables us to answer queries approximately and allows for efficient updates.

Definition: Turnstile Data Stream Model

Given a universe U of size N and a stream
of updates (a1, c1), ..., (an, cn) with ai ∈
U, ci ∈ Z, we have a data vector d := d(n)
defined as

d(i) = (du(i))u∈U ∈ ZU for 0 ≤ i ≤ n

defined by
du(0) := 0

du(i + 1) :=

{
du(i) + ci if u = ai

du(i) if u 6= ai

For the following algorithms, we need to impose
additional restrictions on the data model

Definition: Strict Turnstile Model

All entries of the data vector are nonnega-
tive at any time, i.e. du(i) ≥ 0 for all u ∈ U,
i ∈ [n]

Definition: Cash Register Model

All updates are positive, i.e. ci > 0 for all
i ∈ [n]

47

Algorithm: Simple Sketch(k)

Input: Universal hash family H from U to
[k].

Output: Sketch S.
1: draw h from H
2: for i = 1, ..., k do
3: S[i] := 0
4: end for
5: while not end of stream do
6: (a, c)← next update
7: S[h(a)]← S[h(a)] + c
8: end while
9: return S

To estimate a data value du, we use d∗u := S[h(u)]

Theorem: Error Probability of Simple Sketch

Let ε > 0 such that k ≥ 2
ε . Then, in the

strict turnstile model, the following holds
for d∗u:

1. du ≤ d∗u
2. E(d∗u − du) ≤ ε

2‖d‖1 and
Pr(d∗u − du ≥ ε‖d‖1) ≤ 1

2

To reduce the error probability, we create mul-
tiple simple sketches and take for each value
the smallest estimate resulting from the obtained
sketches:

Algorithm: Count Min Sketch(k, `)

Input: Universal hash family H from U to
[k].

Output: Sketch S.
1: draw h1, ..., h` independently from H
2: for i = 1, ..., k do
3: for j = 1, ..., ` do
4: S[i, j]← 0
5: end for
6: end for
7: while not end of stream do
8: (a, c)← next update
9: for j = 1, ..., ` do

10: S[hj(a), j]← S[hj(a), j] + c
11: end for
12: end while
13: return S

To estimate a data value du, we use du∗ :=
minj∈[`] S[hj(u), j]

Theorem: Error Probability of Count Min
Sketch

Let ε, δ > 0 such that k ≥ 2
ε and ` ≥ log 1

δ .
Then, in the strict turnstrile model, the
following holds for the estimator d∗u

1. du ≤ d∗u
2. Pr(d∗u − du ≥ ε‖d‖1) ≤ δ

48

8.5.1 Heavy Hitters

Definition: Heavy Hitter

An element u ∈ U is a heavy hitter with
threshold τ > 0 for a data vector d if

du ≥ τ‖d‖1

Theorem: Error of CM Heavy Hitters

We assume the cash register model. Let
ε, δ, τ > 0 and k ≥ 2

ε and ` ≥ log n
δ . Then,

the algorithm CM Heavy Hitters(k, `, τ) re-
turns

1. All elements u such that du ≥ τ‖d‖1
2. With probability at least 1− δ no ele-

ments u such that du ≤ (τ − ε)‖d‖1

Algorithm: CM Heavy Hitters(k, `, τ)

Let H be a universal family of hash func-
tions from U to [k].
• Compute a CM sketch S with parame-

ters k, `
• Maintain ‖d‖1 during the computation
• During the computation, maintain a set

H of elements u ∈ U whose estimated
value d∗u is at least τ‖d‖1
• After each update, remove elements

from H whose value has dropped below
τ‖d‖1

• return H

49

	Introduction
	Machine Learning Basics
	Types of Learning
	Supervised Learning
	Semi-Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Hypotheses and Hypothesis Space
	Nearest Neighbor Learning
	Description of Classification Problems
	The k-Nearest Neighbor Classifier

	Decision Trees
	Syntax of Decision Trees
	Representation of Boolean Formulas as Decision Trees

	The Perceptron
	Normalizing the Data Points
	Algorithm for the Perceptron

	k-Means Clustering

	Information and Compression
	Background from Probability Theory
	Concentration Inequalities

	Entropy
	Information of an Event
	Entropy
	Entropy for Decision Tree Learning

	Compression
	Generating the Input Strings

	Lossy Compression
	Shannon’s Source Coding Theorem

	Statistical Learning Theory
	PAC (Probably Approximately Correct) Learning Framework
	Sample Size Bounds for Finite Hypothesis Classes
	Infinite Hypothesis Classes
	Description Schemes
	VC Dimension

	Multiplicative Weight Updates
	MWU Algorithms
	Deterministic MWU Algorithm
	Randomized MWU Algorithm

	Boosting Weak Learning Algorithms
	Setup for the Weak Learner
	Setup for the MWU Algorithm
	The Boosting Algorithm
	Run-time of the Boosting Algorithm

	Bandit Learning
	Formal Description of Bandit Learning
	Multiplicative Weights Update Algorithm

	High Dimensional Data
	The Strange Geometry of High-Dimensional Spaces
	The High-Dimensional Unit Ball

	Dimension Reduction by Random Projections
	Eigenvalues and Eigenvectors
	Perron-Frobenius Theorem

	Power Iteration
	Principal Component Analysis
	PCA-Transformation
	Best-Fit Subspaces
	The Covariance Matrix and Spectral Decomposition

	Spectral Clustering
	Generalization of the Spectral Clustering
	Relaxation of the Spectral Clustering

	Markov Chains
	Markov Chain Monte Carlo Method
	Bounding the Mixing Time

	Page Rank
	Equivalent Basic Ideas of Page Rank
	Web Graph as Markov Chain
	Implementation of the Page Rank

	Algorithms for Massively Parallel Systems
	Map-Reduce Programming Model
	Relational Algebra in Map-Reduce
	Matrix Multiplication
	Analysis of Map-Reduce Algorithms
	Analysis of Matrix Multiplication

	Multiway Joins in Map Reduce
	Skew-Free Relations

	Streaming Algorithms
	Sampling from Streams
	Hash Functions
	True Randomness
	Families of Hash Functions
	Signatures
	Strongly k-universal Families
	Construction of Strongly k-Universal Families

	Counting Distinct Elements
	Approximately Counting Distinct Elements
	The Flajolet-Martin Algorithm

	Frequency Moments
	An Estimator for Fk
	An Estimator for F2

	Sketching
	Heavy Hitters

