
tightcenter

1

panikzettel.htwr-aachen.de

Logistics Systems Planning 1 Panikzettel
Philipp Schröer, Luca Oeljeklaus

Version 1 — 05.08.2020

Contents

1 Introduction

This Panikzettel is about the lecture Logistics Systems Planning 1 by Prof. Schneider held in the
winter semester 2019/20 and is based on the corresponding slides.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

In this Panikzettel, we introduce new notation for better readability: n := { 1, . . . , n } for some n.

2 Logistic Systems

Logistic activities include:

• Supply logistics: managing raw materials, parts, etc.,
• Internal logistics: stocking, transportation between facilities, packaging, etc.,
• Distribution logistics: supplying of sales points, anything between production and sale.

Planning of a logistics system can be split into three decision levels: strategic, tactical, and operational.

Storage

• Strategic:
– Warehouse planning,
– Selection of warehouse equipment,
– Choice of warehouse layout.

• Tactical:
– Product allocation at storage points,
– Choice of inventory policies.

• Operational:
– Warehouse picking,
– Consolidation in loading area.

Distribution

• Strategic:
– Choice of transport mode,
– Fleet size and composition.

• Tactical:
– Freight assigment,
– Vehicle assignment,
– Crew rostering.

• Operational:
– Vehicle routing,
– Positioning of vehicles and containers,
– Consolidation of orders.

2

https://panikzettel.htwr-aachen.de
https://git.rwth-aachen.de/philipp.schroer/panikzettel

3 Graph Theory

3.1 Graphs

Definition: Undirected Graph

An undirected graph G = (V, E) consists of
• a vertex set V, and
• edges E ⊆

{
{ v, w } ∈ V2

∣∣ v 6= w
}

.

The star (incident edges) of a vertex v is δ(v) =
{ { v, w } ∈ E }.
The degree of a vertex v is d(v) = |δ(v)|.
The set of neighbours of a vertex v is ∆(v) =
N(v) = { w ∈ V | { v, w } ∈ E }.

A mixed graph G = (V, A, E) consists of both
directed and undirected edges. A multigraph is
an undirected graph with potentially multiple
edges between two nodes.

Definition: Directed Graph

A directed graph (digraph) G = (V, A):
• a vertex set V, and
• arcs A ⊆ { (v, w) | v, w ∈ V, v 6= w }.

The backward star (incoming arcs) of v is
δ−(v) = { (w, v) ∈ A | w ∈ V }.

�

forward star
δ+(v) with outgoing arcs.

The in-degree of v is d−(v) = |δ−(v)|.�

Similar with out-degree d+(v).

The set of predecessors of v is given by ∆−(v) =
N−(v) = { w ∈ V | (w, v) ∈ E }.

�

Similar
with successors ∆+(v).

The underlying graph of a graph is obtained by removing the direction of its edges. The number of
edges stays the same. A Hamiltonian path in an undirected graph visits all nodes exactly once.

An undirected graph is Eulerian if for every vertex v, d(v) is even.

A directed graph is Eulerian if for every vertex v it holds that d−(v) = d+(v).

A mixed graph is Eulerian if the sum of all degrees is even and for every vertex set S ⊂ V it holds
that |d−(S)− d+(S)| ≤ du(S). This basically states that for any vertex set, either we have the same
number of in- and outgoing edges or we have enough undirected edges to compensate the lack of
in- or outgoing edges.

A strong (weak) component is a maximum set of nodes which are mutually reachable via directed
(undirected) paths.

3

3.2 Minimum Spanning Tree

A minimum spanning tree is a subset of edges
in an undirected graph with edge weights, so
that the subset is a tree (all nodes are connected
by exactly one path) and with minimum edge
weight.

The idea of Prim’s Algorithm is to select an ar-
bitrary start node and to iteratively build a set
of “reached” vertices which at the end should
include all vertices.

In every iteration, it looks at the star (set of inci-
dent edges) of the “reached” vertex set, that is,
all edges that have one endpoint in the set and
one outside and selects the one with the lowest
weight. It then adds the newly reached vertex to
the set.

Kruskal’s algorithm on the other hand sorts all
vertices by increasing weights. Then it always
selects the next smallest edge that it can be added
to the current tree without introducing a cycle.
Should this not be the case, the edge is discarded.
The algorithm terminates when n− 1 edges have
been selected.

3.3 Shortest Paths

There are different algorithms to find shortest
paths in graphs: either between two nodes, be-
tween one node and all others, or between all
pairs of nodes.

Dijkstra’s algorithm computes the shortest path
between one node and all other nodes in a graph.

The algorithm keeps track of a distance d(v) and
a predecessor pred(v) for each node v. Starting
from s, we keep updating the distances and pre-
decessors of neighbours of a node. If a node was
updated, we mark it so its own neighbours will
be visited again. We do this until no node is
marked (no changes happened).

Algorithm: Prim

Input: Graph G = (V, E) with weights.

Output: MST T ⊆ E.

1. Let T ← {{ v, w } } where { v, w } is the
cheapest edge.

2. Until
⋃

T = V (all vertices reached):
• Find cheapest edge { v, w } that con-

nects a new node (|{ v, w } ∩⋃ T| = 1).
• Set T ← T ∪ { { v, w } }.

3. Return T.

Algorithm: Kruskal

Input: Graph G = (V, E) with weights.

Output: MST T ⊆ E.

1. Let T ← ∅.
2. Until |T| = |V| − 1:
• Take next cheapest edge { u, v } /∈ T.
• If is acyclic(T ∪ { u, v }), then

– T ← T ∪ { { u, v } }.
3. Return T.

Algorithm: Dijkstra

Input: Weighted graph G = (V, E) with
weights w(i, j) ∈N, and a source s ∈ V.

Output: A predecessor function pred and
a distance function d.

1. d(s)← 0 and d(j) = ∞ ∀ j ∈ V \ {s}.
2. Set pred(s)← 0.
3. Set L← { s }.
4. While L 6= ∅:

a) Select i← argmink∈L d(k).
b) Set L← L \ { i }.
c) Each j ∈ N(i) with d(j) > d(i) +w(i, j):
• Set d(j)← d(i) + w(i, j),
• Set pred(j)← i,
• Add L← L ∪ { j }.

5. Return pred and d.

4

4 Location Planning

Location planning is done on either continuous or discrete location spaces. Then there is the distinction
into single-commodity and multi-commodity location problems. Finally, we can also have single-echelon
location problems with flow only in one direction (as opposed to two-echelon location problems).

4.1 Qualitative Methods

Qualitative methods can be used if the number of
solutions is discrete and small.

The weighted scoring method weighs a set of facil-
ities V by m location factors. Each factor k has a
weight wk ∈ (0, 1), and each facility i has a score
sik. The weights are assumed to sum up to 1.

Algorithm: Weighted scoring method

Input: A set V of facilities, and weights
w1, . . . , wm, and scores sik.

Output: Preferred site i∗.

1. For every site i ∈ V, calculate ri =

∑m
k=1 wksik.

2. i∗ = argmaxi∈V ri.

5

4.2 Continuous SESC

The (continuous) single-echelon single-commodity
(SESC) location problem is to find the optimal
location of a single facility in a two-dimensional
Cartesian plane (L2-metric) with a single com-
modity that is to be supplied to a set of successor
nodes.

We basically want to find a “central” point that
has least overall distances where nodes can have
different weights. Note that the transport cost c
is completely irrelevant for the problem.

For the continuous SESC problem, there is an
ugly analytical and recursive expression:

x∗ =
∑i∈V

(
dixi√

(xi−x∗)2+(yi−y∗)2

)
∑i∈V

(
di√

(xi−x∗)2+(yi−y∗)2

)
y∗ = (analogous)

We can heuristically approach this result by do-
ing a fixpoint iteration called Weiszfeld heuristic:
To calculate x∗ (respectively y∗), start with the
“average point”, and then plug in the formulas
above recursively until the error threshold ε is
reached. For ε = 0, this heuristic is actually
exact.

Definition: Continuous SESC

In the single-echelon single-commodity loca-
tion problem, we have a transport cost c and
for each node i ∈ V:
• coordinates (xi, yi),
• a demand di.

We want to find the optimal location of the
new facility (x, y) = argmin(x,y)∈R2 f (x, y)
where

f (x, y) = ∑
i∈V

c · di ·
(√

(xi − x)2 + (yi − y)2
)

.

Algorithm: Weiszfeld heuristic

(SESC input and output)

1. Start with x0 = ∑i∈V dixi
∑i∈V di

and analogously
for y0.

2. Iteratively compute x(h+1) (y(h+1)) by

x(h+1) =
∑i∈V

(
dixi√

(xi−xh)2+(yi−yh)2

)
∑i∈V

(
di√

(xi−xh)2+(yi−yh)2

)
until f (x(h+1), y(h+1))− f (x(h), y(h)) ≤ ε.

4.3 Discrete SESC

In the discrete single-echelon single-commodity lo-
cation problem (SESC), we work on a complete
bipartite graph. We now also add a maximum fa-
cility output qi for each facilities i ∈ V1, because
why not. We also add a production cost Fi for
each facility i.

It is also possible to add a time horizon 1, . . . , T
and make facility outputs time-dependent (qit);
similar for demands.

Definition: Discrete SESC

In the single-echelon single-commodity loca-
tion problem, we are given
• a complete directed bipartite graph

G = (V1 ∪ V2, A), with facilities V1

and clients V2 and arcs A = V1 ×V2,
• a maximum output qi for i ∈ V1,
• a demand dj for i ∈ V2,
• a transport cost Cij(s) for s ∈N,
• a production cost Fi(s) for s ∈N.

6

Variables: sij ≥ 0 ∀ i ∈ V1, ∀ j ∈ V2 (delivery quantity from i to j)

ui ≥ 0 ∀ i ∈ V1 (production at facility i)

min ∑
i∈V1

∑
j∈V2

Cij(sij) + ∑
i∈V1

Fi(ui)

where ∑
j∈V2

sij = ui ∀ i ∈ V1 (every facility i ships exactly all it produces)

∑
i∈V1

sij = dj ∀ j ∈ V2 (every client j receives its demand)

∑
j∈V2

sij ≤ qi ∀ i ∈ V1 (facility output limit)

An instance in this category is the capacitated plant location problem. The simple plant location problem
does not have maximum outputs for facilities.

4.3.1 p-Median Model

The p-median model is a discrete SESC model with a few simplifications. We want to find exactly p
facility locations and have a fixed cost cij ≥ 0 for each facility i ∈ V1 that supplies j ∈ V2.

Variables: xij ∈ { 0, 1 } ∀ i ∈ V1, ∀ j ∈ V2 (xij = 1 iff i supplies j)

yi ∈ { 0, 1 } ∀ i ∈ V1 (yi = 1 iff facility i is opened)

min ∑
i∈V1

∑
j∈V2

cijxij

where ∑
i∈V1

xij = 1 ∀ j ∈ V2 (every client j is connected to one facility)

∑
j∈V2

xij ≤ |V2| · yi ∀ i ∈ V1 (facility i can only serve if opened)

∑
i∈V1

yi = p (exactly p facilities opened)

7

4.3.2 Demand Allocation Problem

In the demand allocation problem, we want to find out average quantities to be supplied for a fixed
set of facilities V1.

Variables: 0 ≤ xij ≤ 1 ∀ i ∈ V1, ∀ j ∈ V2 (xij is the average supply from i to j)

min ∑
i∈V1

∑
j∈V2

cij · xij + ∑
i∈V1

fi

where ∑
i∈V1

xij = 1 ∀ j ∈ V2 (averages sum to 1)

∑
j∈V2

dj · xij ≤ qi ∀ i ∈ V1 (facility output limit)

4.4 Location-Covering Problem

In the location-covering problem, we want to cover a set of users V2 by a subset of facilities V1 in a
graph G = (V1 ∪V2, A) with edges A. We minimise fixed costs of selected facilities fi ∀ i ∈ V1, while
having each user being served by at least one facility to which it is connected. This is expressed by
boolean constants aij ∀ i ∈ V1, j ∈ V2 which is 1 if the edge from i to j exists.

Variables: yi ∈ { 0, 1 } ∀ i ∈ V1 (yi = 1 iff facility i is opened)

min ∑
i∈V1

fi · yi

where ∑
i∈V1

aij · yi ≥ 1 ∀ j ∈ V2 (at least one serving facility per client)

8

4.4.1 LCP Heuristic

Algorithm: Location-Covering Problem Heuristic

Input: An LCP instance.

Output: A set of facilities to be opened.

Define open(i):
• Open i: Set yi = 1.
• Mark i’s neighbours as covered: Delete all constraints containing aij · yi where aij = 1.

1. Construct the LCP LP above.
2. While there are still constraints left:

a) For facility i that is free (where fi = 0):
• open(i).

b) For facility i that is not connected (aij = 0 ∀ j ∈ V2) and not free:
• close(i): Set yi = 0.

c) Find facility i that is cheapest per covered neighbour (argmini fi/ni):
(ni is the number of constraints yi appears in, i.e. the number of covered neighbours.)
• open(i).

3. Return { i ∈ V1 | yi = 1 }.

4.4.2 p-Center Problem

In a p-center problem, we want to locate exactly p facilities so that the maximum travel time from a
user to the closest facility is minimised. The p facilities are either on vertices or arcs/edges on a
(potentially mixed) graph G = (V, E, A). This problem is NP-hard for p ≥ 2. If G is directed, then
there is an optimal solution with the facilities located solely on vertices.

9

The 1-center problem is solved by Hakimi’s al-
gorithm. Here, we have travel times tij from
node i to j. Then we have a distance function
τh : P → R that maps a set of points P =

{ phk, . . . | { h, k } ∈ E } to a distance. These
points lie somewhere on the edges (but may
also lie directly on one vertex).

h k

i

|
phk

τh(phk) τk(phk)

t ih
tik

The travel time from one point phk on the edge
h, k to a vertex i is given by Ti(phk). The algo-
rithm first computes minimal travel times from
every point to every vertex. Then, for every
edge h, k, the best phk is selected. Finally, we
choose the best of those over all edges.

Algorithm: Hakimi

Input:
• A graph G = (V, E),
• distances τh : P→ R

• for points P = { phk, . . . | { h, k } ∈ E }.

Output: A point phk.

1. Minimal travel times for every vertex
i ∈ V to any point on the edge { h, k }:

Ti : P→ R

Ti(phk) = min { tih + τh(phk), tik + τk(phk) }

2. Local center for every edge, the point
that minimises the maximum distance to
all vertices:

p∗hk = argmin
phk∈P

max
i∈V

Ti(phk).

3. Find 1-center, the best local center:

p∗ = argmin
phk∈P

max
i∈V

Ti(p∗hk).

5 Transportation Planning

5.1 Modes of Transport

Rail Transport Rail transport is inexpensive, but slow and unreliable. This is due to: It having a
lower priority than passenger rail, direct connections being rare, and requiring a large quantity of
goods in order to be profitable. It is mostly used to transport raw materials.

Road Transport Road transport is mostly used to transfer (semi-)finished products using trucks
and can be separated into two categories, truckload (TL) and less-than-truckload (LTL). TL is used to
transfer directly from one location to another using the full capacity of the vehicle. LTL is used
when single shipments are significantly smaller than vehicle capacity. Shipments are then transfered
between vehicles covering different legs of the trip.

Air Transport Air transport is fast, but slowed by airport handling, and only competitive for long-
haul transport. Planes have very low capacity. Thus they are mostly used for high-value goods over
long distance.

Water Transport Water transport is mostly used to send bulk raw materials, represents 99% of the
weight and 50% of the value of international trade. Also it’s pretty cheap.

Pipeline Transport Pipeline transport only usable for specific goods, very slow, can provide a
constant flow of goods, and is very reliable.

10

5.2 Vehicle Routing Problems

In Vehicle Routing Problems (VRPs), we want to
route m vehicles on a graph, starting and ending
at a depot o ∈ V. Usually, we minimise costs of
edges/arcs and number of vehicles used.

• ??: Node Routing Problem (NRP)
if R = ∅ (only target vertices)

– Traveling Salesperson Problem (TSP)
if m = 1 (one vehicle)

• ??: Arc Routing Problem (ARP)
if U = ∅ (only target arcs/edges)

– Rural Postman Problem (RPP)
if m = 1 (one vehicle)
∗ Chinese Postman Problem (CPP)

if G is complete

Definition: Vehicle Routing Problem

A instance of a VRP is defined on a graph
G = (V, A, E) with:
• V: a vertex set,
• A: a directed edge set,
• E: an undirected edge set,

• o ∈ V: the origin,
• U ⊆ V: the target vertices,
• R ⊆ A ∪ E: the target arcs/edges,
• m: number of vehicles,

• (some costs to minimise).

Note: Often, the term Vehicle Routing Problem is used to refer to NRPs. ARPs are explicitly named.

5.3 Node Routing Problems (NRPs)

5.3.1 Traveling Salesperson Problem (TSP)

In the traveling salesperson problem, we want to find a route for one vehicle that visits all required
vertices and the depot. The input graph G is not necessarily complete, so we consider the auxiliary
complete graph G′ = (V ′, A′) where V ′ = U ∪ { 0 } and (i, j) ∈ A′ with costs cij, the cost of the
least-cost path between i and j.

G′ satisfies the triangle inequality: cij ≤ cik + ckj ∀(i, j) ∈ A′, k ∈ V ′, k 6= j, j.

Variables: xij ∈ { 0, 1 } ∀(i, j) ∈ A′ (xij = 1 iff (i, j) is part of the solution)

min ∑
(i,j)∈A′

cij · xij

where ∑
i∈V′\{ j }

xij = 1 ∀ j ∈ V ′ (every vertex j has an incoming arc)

∑
j∈V′\{ i }

xij = 1 ∀ i ∈ V ′ (every vertex i has an outgoing arc)

∑
i,j∈S

xij ≤ |S| − 1 ∀ S (V ′, |S| ≥ 2 (subtour elimination constraints)

Asymmetric TSP (ATSP) as presented above is NP-hard. We can obtain a lower bound by solving the
assignment problem, a relaxation of ATSP. The idea is to remove the subtour elimination constraints
and the integrality of xij (so that only xij ≥ 0). Additionally, set cii = ∞ ∀ i ∈ V ′ so that x∗ii = 0.
Then the optimal solution of the LP (solvable in polynomial time!) represents a collection of subtours
in G′ over all vertices. This gives us a lower bound for the optimal cost of ATSP.

11

5.3.2 Capacitated VRP (CVRP)

We refer to our Operations Research 1 Panikzettel which has a section on VRP.

5.3.3 VRP with Time Windows (VRPTW)

We refer to our Operations Research 1 Panikzettel which has a section on VRP.

5.4 VRP/NRP Heuristics

5.4.1 Patching Heuristic

The patching heuristic is useful for the ATSP, and the solutions it yields for the STSP are pretty bad.
This is due to the fact that solving the STSP LP without SECs yields a lot of tours of length 2.

We solve the ATSP LP without the SECs. All edges in the optimal solution are on at exactly one
tour. Then the two subtours with the largest number of nodes are merged so that the overall cost is
least increased. Repeat until we have only one tour left.

5.4.2 Nearest Neighbour Heuristic

Select a start node. Always select nearest neighbour to continue the tour. If vehicle capacity is
reached, end tour and start over with next vehicle.

5.4.3 Insertion Heuristics

Insertion heuristics add heuristically chosen nodes to the current subtour. One may start with a tour
of three nodes, for example the largest triangle.

• Nearest insertion: Select vertex closest to any vertex already in the tour.
• Cheapest insertion: Greedily select vertex that is cheapest to insert.
• Farthest insertion: Select the farthest vertex from any vertex in the tour.
• Random insertion: Add a randomly chosen vertex.

Nearest and cheapest insertion are 2-approximations, while farthest and random insertion are only
6.5-approximations. On empirical examples however, farthest and random insertion perform better
than the two others.

12

https://panikzettel.philworld.de/or1.pdf
https://panikzettel.philworld.de/or1.pdf

5.4.4 CVRP Construction Heuristics

There are two types of construction heuristics given m vehicles:

• Cluster first, route second: Partition vertices into m clusters and then solve the STSP on each
induced complete subgraph (exactly or heuristically).
• Route first, cluster second: Compute a single route and then split into m feasible subroutes.

5.4.5 Savings Heuristic

The savings heuristic is for symmetric VRP only. Start by connecting every vertex by an individual
tour to the origin. Then compute for every pair of tours the savings: what we would save by
fusing that pair of tours compared to having two separate tours. After sorting all pairs of tours
by decreasing savings, repeatedly fuse the pair which provides the most savings, until no more
positive savings can be found.

Algorithm: Savings Heuristic

Input: A graph G = (V, E, c) with c : E→ Q+.
Output: A set of tours C.

1. Compute the set C of n tours Ci := (0, i, 0) for all i ∈ V.
2. For every pair of vertices v and w with v 6= w:
• compute potential savings svw = c0v + cw0 − cvw.

3. Let L be the sorted list of savings that are non-negative.
4. While L is non-empty:

a) Select the first feasible element (v, w) of L. (v, w) is feasible if
• v is the last vertex of its tour,
• and w the first of its own (or vice versa) and,
• if applicable, if the current vehicle meets the capacity requirements.

b) Remove all unfeasible edges from L.
c) Remove (v, 0) and (0, w) and fuse the tours Cv and Cw by adding the edge (v, w).

5. Return C.

5.4.6 k-opt Local Search Heuristic

Given a heuristic solution to a node routing problem, the k-opt heuristic can be used to further
improve the solution. The idea is to explore all similar solutions and choose a better one. Here, we
choose the best solution among all those where k edges are substituted by k other edges. Repeatedly
do this until the solution cannot be improved in this way. Then we have a local optimum. The
heuristic has exponential runtime in k and thus usually k = 2 or k = 3.

13

5.5 Arc Routing Problems

In arc routing problems (ARP), one has to traverse
a (sub-)set of arcs in a graph at least once. ARPs
are classified by two aspects.

Link type and weight (U) undirected, (D) directed,
(M) mixed (i.e. both directed and undirected),
and (W) windy, where edges always have a re-
verse edge, but the cost is not necessarily sym-
metric (cij 6= cji).

Connection of links The Chinese postman problem
(CPP) is defined on connected graphs. Otherwise
we have a pural postman problem (RPP).

Chinese Postman Rural Postman
U UCPP (P) URPP (NP)
D DCPP (P) DRPP (NP)
M MCPP (NP) MRPP (NP)
W WCPP (NP) WRPP (NP)

(Only directed and undirected Chinese Postman
Problems are solvable in polynomial time.)

6 Warehouse Planning

6.1 Warehouse Layouts

Here, we go through three different types of
warehouse layouts, which are illustrated on the
right. The first one is the flow-through layout, with
one end of the warehouse having entry points,
the other having exit points, and the storage
lying inbetween. This layout is useful if most
load units require the same operations.

The U-layout, illustrated in the middle, describes
a situation in which entry and exit points are
on the same side of the warehouse. It is use-
ful for low material flows and when needing
flexibility with regards to the assignment of ship-
ping/receiving space.

The hybrid layout has entry and exit points on
different, though non-opposed sides of the build-
ing.

sto
ra

ge zo
ne

re
ce

iv
in

g
zo

ne

sh
ip

pi
ng

zo
ne

sto
ra

ge zo
ne

shipping
zone

receiving
zone

storage zone

re
ce

iv
in

g
zo

ne

shipping zone

14

6.2 Picker Routing

The following descriptions of heuristics for ef-
ficient package picking will seem rather vague
and informal. The author wants to apologise for
this, however the material provided during the
course of the lecture did not allow for a more
precise write-up.

6.2.1 S-Shaped routing

1. From the entrance, move to the upmost row
that contains packages.

2. move down that row in an S-shape, entering
only aisles that contain packages, traversing
them completely.

3. after having picked up the last package of the
row, immediately rejoin the lower aisle.

4. There, traverse the row in the same manner,
choose direction freely.

5. Continue until last row, then return to en-
trance.

6.2.2 Largest Gap Heuristic

1. For every aisle, compute the largest gap, that
is, the largest distance between two packages
or a package and an entrance such that no
other package lies between. This gap shall not
be crossed except if we reach the end of a row.

2. Move to the upmost row that contains pack-
ages. Walk along the aisles and pick up all
packages that can be reached without cross-
ing the largest gap. Return when reaching the
largest gap.

3. After reaching the last aisle that contains a
package, cross it completely and go in reverse,
picking up packages that haven’t been picked
up.

6.2.3 Aisle-by-Aisle Heuristic

1. Starting from the leftmost aisle containing a
package, traverse every aisle from left to right.

2. Select crossaisle for traversal to minimise
travel distance.

From top to bottom: S-shaped routing, Largest
Gap Heuristic and Aisle-by-Aisle Heuristic.

15

	Introduction
	Logistic Systems
	Graph Theory
	Graphs
	Minimum Spanning Tree
	Shortest Paths

	Location Planning
	Qualitative Methods
	Continuous SESC
	Discrete SESC
	p-Median Model
	Demand Allocation Problem

	Location-Covering Problem
	LCP Heuristic
	p-Center Problem

	Transportation Planning
	Modes of Transport
	Vehicle Routing Problems
	Node Routing Problems (NRPs)
	Traveling Salesperson Problem (TSP)
	Capacitated VRP (CVRP)
	VRP with Time Windows (VRPTW)

	VRP/NRP Heuristics
	Patching Heuristic
	Nearest Neighbour Heuristic
	Insertion Heuristics
	CVRP Construction Heuristics
	Savings Heuristic
	k-opt Local Search Heuristic

	Arc Routing Problems

	Warehouse Planning
	Warehouse Layouts
	Picker Routing
	S-Shaped routing
	Largest Gap Heuristic
	Aisle-by-Aisle Heuristic

