
tightcenter

1

panikzettel.htwr-aachen.de

Operations Research 1 Panikzettel
Philipp Schröer, Younes Müller

Version 2 — 25.11.2020

Contents

1 Introduction

This Panikzettel is about the lecture Operations Research 1 by Prof. Lübbecke held in the winter
semester 2019/20.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

In this Panikzettel, we introduce new notation for better readability: n := { 1, . . . , n } for some n.

2 Mixed-Integer Linear Programs

A mixed-integer linear program (MILP, MIP) con-
sists of an objective (here, a linear function to
maximize), and linear inequalities over a bunch
of variables.

Minimization and inequalities in other directions
can be implemented by simple transformations
(which we won’t cover here).

Note that we use a slightly different notation
in this Panikzettel than in the definition on the
right. Here, variables along with a domain are
listed first. Technically speaking, the domain is
also a constraint!

Definition: Mixed-Integer Linear Program

A mixed-integer linear program (MILP) has
the following form, where n, q ∈N:

max cT

s.t. Ax ≤ b

x ∈ Zn
+ ×Q

q
+

If n = 0, we have a linear program (LP),
if q = 0, we have a (pure) integer linear
program (ILP, IP).

Logical operators can be easily implemented in LPs. Let binary variable x = 1 iff statement X is
true or x = 0 iff X is false.

2

https://panikzettel.htwr-aachen.de
https://git.rwth-aachen.de/philipp.schroer/panikzettel

Logical operators

• X = Y ∧ Z: x ≤ y, y ≤ z, x ≥ y + z− 1
• X = Y ∨ Z: x ≥ y, x ≥ z, x ≤ y + z
• X = ¬Y: x = 1− y

Consequences

• X =⇒ Y: x ≤ y
• ¬Y =⇒ ¬X: x ≤ y
• X ⇐⇒ Y: x = y

3 Modeling with Integer Linear Programs

3.1 Minimum Cost (Bipartite) Matching Problem

This is also known as an assignment problem. The goal is to assign n workers to m machines with an
assignment cost cij, minimizing the cost such that each machine is operated by a worker.

Variables: xij ∈ { 0, 1 } ∀ i ∈ n, j ∈ m (xij = 1 iff worker i operates j)

min ∑
i∈n,
j∈m

cij · xij

where ∑
j∈m

xij ≤ 1 ∀ i ∈ n (each worker to at most one machine)

∑
i∈n

xij = 1 ∀ j ∈ m (operate every machine)

3.2 Transportation Problem

Let G = (V, E) be a directed graph. Given n supplies ai, and m demands bj, and a transport cost cij
for each pair i→ j, find a cost-minimal transport that fulfills demands with the given supplies.

Variables: xij ∈N0 ∀ i ∈ n, j ∈ m (ship xij units from i to j)

min ∑
(i,j)∈E

cij · xij

where ∑
(i,j)∈E

xij ≥ bj ∀ j ∈ m (fulfill demands)

∑
(i,j)∈E

xij ≤ ai ∀ i ∈ n (supply limits)

3.3 Minimum Cost Network Flows

We want to find a minimum cost flow in a di-
rected graph G = (V, A) with a cost function
c : E → N0, arc capacities u : A → N0 and
demands b : V → Z.

Outgoing edges from i are denoted δ+(i), and
incoming edges are denoted δ−(i).

Definition: Flow

A flow is a mapping f : A→N0 with
• Capacity satisfaction: For all a ∈ A:

f (a) ≤ u(a),
• Flow conservation: For all v ∈ V:

∑
a∈δ+(v)

f (a)− ∑
a∈δ−(v)

f (a) = b(v).

3

Variables: xij ∈N ∀(i, j) ∈ A (flow of xij from i to j)

min ∑
(i,j)∈A

cij · xij

where xij ≤ uij ∀(i, j) ∈ A (capacities)

∑
(i,j)∈δ+(i)

xij − ∑
(j,i)∈δ−(i)

xji = bi ∀ i ∈ V (flow conservation)

3.4 Knapsack Problem

In the 0-1 knapsack problem, we want to to find a profit-maximizing selection of n items of size ai
with profits pi to pack in a knapsack of capacity b.

Variables: xi ∈ { 0, 1 } ∀ i ∈ n (xi = 1 iff i is in the knapsack)

max ∑
i∈n

pi · xi

where ∑
i∈n

ai · xi ≤ b (capacity)

3.5 Bin Packing Problem

In the (one-dimensional) bin packing problem, we want to pack n items of sizes ai into bins of capacity
b, minimising the number of bins. There is an upper bound of m bins.

Variables: xij ∈ { 0, 1 } ∀ i ∈ n, j ∈ m (xij = 1 iff item i is in bin j)

yj ∈ { 0, 1 } ∀ j ∈ m (yj = 1 iff bin j is used)

min ∑
j∈m

yj

where ∑
j∈m

xij = 1 ∀ i ∈ n (every item i must be packed)

∑
i∈n

ai · xij ≤ b · yj ∀ j ∈ m (capacity for each bin)

Pattern-based Alternative Model

Use one variable for each feasible pattern: One pattern x ∈ { 0, 1 }n for every combination of items
that can be packed into a single bin:

Q =

{
x ∈ { 0, 1 }n

∣∣∣∣∣ n

∑
i=1

ai · xi ≤ b

}
.

4

We minimize the number of used bins by minimising the number of patterns λq. To ensure that each
item is packed exactly once, we define the set of patterns that contain item i: Qi = { q ∈ Q | qi = 1 }
for all i ∈ n.

Variables: λq ∈ { 0, 1 } ∀ q ∈ Q (λq = 1 iff a bin is filled according to pattern q)

min ∑
q∈Q

λq

where ∑
q∈Qi

λq = 1 ∀ i ∈ n (each item is packed exactly once)

3.6 Location Problems

In the basic facility location problem, we have m potential facilities with opening costs fi, and
connection costs cij. We want to open facilities such that each client is served by exactly one opened
facility, minimizing the total cost.

Variables: xij ∈ { 0, 1 } ∀ i ∈ m, ∀ j ∈ n (xij = 1 iff client j is served by facility i)

yi ∈ { 0, 1 } ∀ i ∈ m (yi = 1 iff facility i is opened)

min ∑
i∈m

fi · yi + ∑
i∈m,
j∈n

cij · xij

where ∑
i∈m

xij = 1 ∀ j ∈ n (exactly one serving facility per client)

xij ≤ yi ∀ i ∈ m, ∀ j ∈ n (a facility can serve only when opened)

There are various variants of the basic problem:

• demands and capacities: demands qj and capacities Ci: ∑j∈n qjxij ≤ Ci∀i ∈ m
• p-median problem: open exactly p facilities: ∑i∈m yi = p.
• p-center problem: minimize largest distances to open facilities: min maxi,j cij · xij.

3.7 Lot Sizing (sketch)

We decide how much of a product we produce at a time step and how much we store while
minimizing the storing cost and setup cost for the machine.
There are T periods, with a demand of bt in each. Storing the product costs l per unit per time and

5

setting up the machine to produce goods costs r in a timestep.

Variables: xt ≥ 0 ∀ t ∈ T (amount to produce in t)

yt ≥ 0 ∀ t ∈ T (amount to store in t)

zt ∈ { 0, 1 } ∀t ∈ T (set up in t?)

min ∑
t∈T

l · yt + ∑
t∈T

r · zt

where yt−1 + xt − yt = bt ∀ t ∈ T (balance material)

xt ≤ zt ·M ∀ t ∈ T (set up only if producing)

3.8 Scheduling

In the parallel machine scheduling setting, we want to assign n jobs which require times pj to m
identical machines, minimizing the makespan (longest completion time).

Variables: xjk ∈ { 0, 1 } ∀ j ∈ n, k ∈ m (xjk = 1 iff job j is assigned to machine k)

Cmax ≥ 0 (makespan)

min Cmax

where ∑
k∈m

xjk = 1 ∀ j ∈ n (assign all jobs)

∑
j∈n

pj · xjk ≤ Cmax ∀ k ∈ m (last completion time defines Cmax)

On a single machine, we can also solve scheduling with precedence constraints. Given n jobs, and
a partial order i ≺ j on the jobs that defines that i must start before j, we want to minimize the
makespan again. Define E = { { i, j } | i 6= j, i ⊀ j, j ⊀ i } and choose M to be “large”.

Variables: xij ∈ { 0, 1 } ∀ { i, j } ∈ E (xij = 1 iff job i runs before j)

tj ≥ 0 ∀ j ∈ n (start times)

Cmax ≥ 0 (makespan)

min Cmax

where ti + pi ≤ tj ∀ i ≺ j (start after previous has completed)

ti + pi ≤ tj + (1− xij) ·M ∀ { i, j } ∈ E (1)

tj + pj ≤ ti + xij ·M ∀ { i, j } ∈ E (2)

tj + pj ≤ Cmax ∀ j ∈ n

Equations (1) and (2) express that xij = 1 iff i precedes j. Formally, we have xij = 1⇒ ti + pi ≤ tj
and xij = 0⇒ tj + pj ≤ ti. These two expressions are linearised using the “big M” constant.

Extensions:

• Release dates rj can be added by constraints tj ≥ rj ∀ j ∈ n.
• Deadlines dj can be enforced by tj + pj ≤ dj ∀ j ∈ n.

6

The “big M” can be avoided by discretising the time horizon, creating lots of new variables. So let
the time horizon t = 1, . . . , T.

Variables: xjt ∈ { 0, 1 } ∀ j ∈ n, t ∈ T (xjt = 1 iff job j starts at time t)

Cmax (makespan)

min Cmax

where
T−pj+1

∑
t=1

xjt = 1 ∀ j ∈ n (each job must start)

T−pi+1

∑
t=1

(t + pi) · xit ≤
T−pj+1

∑
t=1

tj · xjt ∀ i, j ∈ n, i ≺ j (precedence)

1− xjt ≥
t+pj−1

∑
τ=t

xiτ ∀ i ∈ n \ { j } , j ∈ n
t ∈ T − pj + 1

(job j starts at t ⇒
no other i can start before t + pj

)

T−pj+1

∑
t=1

(t + pj) · xjt ≤ Cmax ∀ j ∈ n (completion time)

In the above, the expression ∑
T−pi+1
t=1 t · xit equals the starting time of job i. The expression

∑
T−pi+1
t=1 (t + pi) · xit equals the end time of job i.

3.9 Minimum Spanning Tree

A minimum spanning tree of a graph G = (V, E) with edge weights ce ≥ 0 is a tree in G that connects
all nodes.

Variables: xe ∈ { 0, 1 } ∀ e ∈ E (xe = 1 iff edge e is in the MST)

min ∑
e∈E

ce · xe

where ∑
e∈E

xe = |V| − 1 (spanning tree)

∑
e∈δ(X)

xe ≥ 1 ∀∅ (X (V (connectivity)

7

3.10 Traveling Salesperson Problem

In the traveling salesperson problem (TSP), we want to find a minimum cost tour in a graph G = (V, E)
with edge costs cij. A tour is a cycle that visits each node exactly once.

Variables: xe ∈ { 0, 1 } ∀ e ∈ E (xij = 1 iff i→ j is in the tour)

min ∑
e∈E

ce · xe

where ∑
e∈δ(i)

xe = 2 ∀ i ∈ V (connectivity)

∑
e∈δ(S)

xe ≥ 2 ∀ S (V, |S| ≥ 3 (subtour elimination constraints)

Alternative Subtour Elimination Constraint

The following formulation has only linearly many constraints. We formulate the TSP for a directed
graph G = (V, A).

Variables: xe ∈ { 0, 1 } ∀ e ∈ A (xij = 1 iff i→ j is in the tour)

ui ≥ 0 ∀ i ∈ V (index of i in tour)

min ∑
e∈A

ce · xe

where ∑
e∈δ−(i)

xe = 1 ∀ e ∈ A (in-degree constraint)

∑
e∈δ+(i)

xe = 1 ∀ e ∈ A (out-degree constraint)

ui + 1 ≤ uj + (1− xe) ·M ∀i ∈ V (subtour elimination)

The subtour elimination constraint uses the big-M method. It can be adapted to feature time
windows.

3.11 Vehicle Routing Problem

In the vehicle routing problem (VRP), we want to serve n customers with K identical vehicles on a
directed graph G = (V, E). There is a driving cost for each edge of cij. We want to find a tour for
each vehicle starting and ending at a depot d, so that all customers are served (by one vehicle) at

8

minimum cost. We assume that not all vehicles have to be used.

Variables: xk
ij ∈ { 0, 1 } ∀ k ∈ K, (i, j) ∈ E (xk

ij = 1 iff vehicle k goes from i to j)

zk
i ∈ { 0, 1 } ∀ k ∈ K, i ∈ V (zk

i = 1 iff vehicle k visits i)

min ∑
(i,j)∈E

ck
ij · xk

ij

where ∑
(i,j)∈δ+(i)

xk
ij = ∑
(j,i)∈δ−(i)

xk
ji ≥ zk

i ∀ k ∈ K, i ∈ V (flow conservation)

∑
e∈δ−(d)

xk
e = 1 (every vehicle visits depot)

∑
k∈K

zk
i = 1 ∀ i ∈ V (every customer must be visited)

∑
(i,j)∈δ+(S)

xk
ij = ∑
(j,i)∈δ−(S)

xk
ji ≥ zk

i ∀ k ∈ K, S (V \ d, i ∈ S (SEC)

3.11.1 Capacity - CVRP

In the capacitated vehicle routing problem (CVRP), we also have demands qi ≥ 0 and a vehicle capacity
Q. We just need one additional constraint:

where ∑
i∈V

zk
i · qi ≤ Q ∀ k ∈ K (vehicle capacities)

3.12 Pickup and Delivery

With CVRP with pickups and deliveries, we extend the problem domain to qi ∈ R. Instead of the
simple constraint above, we need a “big M” constraint and new variables yk

i .

Variables: 0 ≤ yk
i ≤ Q ∀ i ∈ V, k ∈ K (vehicle load after leaving i)

where yk
i + qi ≤ yk

j + (1− xk
ij) ·M ∀(i, j) ∈ E, k ∈ K (vehicle load)

(The “big M” constraint is equivalent to xk
ij = 1 =⇒ yk

i + qj ≤ yk
j .)

3.12.1 Time Windows - VRPTW

The last variant we cover is the vehicle routing problem with time windows (VRPTW). It is like VRP, but
now we require delivery in a time window [ai, bi] at customer i. The vehicles need tij to traverse
i⇒ j. Add variables wk

i ≥ 0 ∀ i ∈ V, k ∈ K for the time vehicle k starts at customer i. We want to
express

xk
ij = 1 =⇒ wk

i + tij ≤ wk
j ∀(i, j) ∈ E, k ∈ K.

9

This can be realized using a “big M” constraint. It also acts as SEC, so the original SEC can be
removed. We add the following constraints:

Variables: wk
i ≥ 0 ∀ i ∈ E, k ∈ K (vehicle k start time at customer i)

where wk
i + tij ≤ wk

j + (1− xk
ij) ·M ∀(i, j) ∈ E, k ∈ K (

link wk
i and xk

ij,
vehicle k needs tij to go from i to j

)

ai ≤ wk
i ≤ bi ∀ i ∈ V (time window is met)

Sidenote: The constraint is similar to the alternative SEC in TSP (??).

3.13 Set Covering, Set Partitioning, Set Packing

The class of set problems includes set covering, set partitioning, and
set packing. In every case, we have a “universe” U = { e1, . . . , en },
a set of subsets S ⊆ P(U), and a cost c(S) for each subset S ∈ S .
All three LPs are similar, and differ only in the objective and
inequation operator.

Set Cover min ≥
Set Partition min =

Set Packing max ≤

Set Cover We want to cover all elements with a subset of S .

Variables: xS ∈ { 0, 1 } ∀ S ∈ S (xS = 1 iff S is selected)

min ∑
S∈S

c(S) · xs

where ∑
S∈S ,
ei∈S

xS ≥ 1 ∀ i ∈ n (must cover all elements)

Set Partition Choose a partition ⊆ S , i.e. each element is in exactly one set of the partition.

Variables: xS ∈ { 0, 1 } ∀ S ∈ S (xS = 1 iff S is in the partition)

min ∑
S∈S

c(S) · xs

where ∑
S∈S ,
ei∈S

xS = 1 ∀ i ∈ n (each element is in exactly one selected set)

Set Packing Select cost-maximal sets, but each element can only be selected at most once.

Variables: xS ∈ { 0, 1 } ∀ S ∈ S (xS = 1 iff S is selected)

max ∑
S∈S

c(S) · xs

where ∑
S∈S ,
ei∈S

xS ≤ 1 ∀ i ∈ n (each element is selected at most once)

The three set problems are problems that reoccur frequently. The alternative bin-packing model (??)
for example is a packing problem, where the the universe U consists of the items and the set of
subsets S ⊆ P(U) is the set of possible one-bin-packings.

10

4 Modeling with Non-Linear Integer Programs

Previously, we only presented linear integer programs (although often with exponential size). Now
we show some techniques to deal with nonlinearity.

Product of two binary variables A product
of two binary variables z = x · y where
x, y, z ∈ { 0, 1 } can be linearised as follows:

z ≤ x

z ≤ y

y ≥ x + y− 1

x = 0 ⇒ z = 0

y = 0 ⇒ z = 0

x = 1∧ y = 1 ⇒ z = 1

Product of binary and bounded variable Con-
sider z = x · y where x ∈ { 0, 1 } and l ≤
y ≤ u.

z ≤ u · x
z ≥ l · x
z ≤ y− l · (1− x)

z ≥ y− u · (1− x)

5 Relaxations of Strength and Models

Let’s start with general problem X ⊆ Zn
+, i.e. the

task is to find minimal/maximal points in X. A
formulation for X is a polyhedron that includes
all of X (but possibly more points). Because the
polyhedra can be arbitrarily precise, there are
infinitely many formulations for a problem.

Definition: Formulation

A polyhedron P ⊆ Qn
+ is a formulation for

a problem X ⊆ Zn
+ if X = P ∩Zn

+.

Analogously for mixed integer sets X ⊆ Zn
+ ×Q

q
+.

However, we want the polyhedron to be as pre-
cise as possible. We call a formulation stronger
than another formulation if it is strictly smaller.

The strongest possible formulation is called ideal
if it is exactly the convex hull of the problem.

Definition: Strength of Formulations

Let P1, P2 be formulations for X.
P1 is stronger than P2 when P1 (P2.

A formulation P is ideal for X when
P = conv(X).

By removing integrality constraints on an integer
linear program, we can find lower bounds for
optimal solutions (for min problems). We call
this relaxation, because the problem without inte-
grality constraints is less strong than the integer
problem.

Theorem: Relaxation

Let z∗ =
{

ctx
∣∣ Ax ≥ b, x ∈ Zn

+

}
.

The relaxation z =
{

ctx
∣∣ Ax ≥ b, x ≥ 0

}
is a lower bound on the optimum: z ≤ z∗.

11

Given an IP/MIP, any integer feasible solution
gives an upper bound z for the optimal solution
z∗. We call z primal bound.

Together with the result from optimizing over
any relaxation of an IP, we get lower and upper
bounds for the IP solution.

The gap γ gives us a worst-case quality guar-
antee in percent on the primal bound z. z is
no further away from z∗ than γ% (for min prob-
lems).

Definition: Relaxation Quality (gap)

Let z∗ be the optimal solution for an
IP/MIP,
• z ≥ z∗ be the primal bound,
• z ≤ z∗ the dual bound.

We define gap γ :=

{
z−z
|z| if z · z > 0

∞ otherwise

5.1 Cutting Planes

Cutting planes are used to strengthen the LP that
results from relaxation of an IP again, so that the
lower bound (again, we assume min problems)
becomes more precise (that is, higher).

A valid inequality for an LP relaxation preserves
all integer solutions. And a cutting plane is a valid
inequality that cuts away an optimal solution x∗

in the LP relaxation (that is not a solution for the
original IP).

Definition: Cutting plane

Given
• an IP min { ctx |

:=X︷ ︸︸ ︷
Ax ≥ b, x ∈ Zn

+ },
• its LP relaxation min { ctx | Ax ≥ b, x ≥ 0︸ ︷︷ ︸

:=P

}.

An inequality atx ≥ a0 is valid for X iff
atx ≥ a0 ∀ x ∈ X

A valid atx ≥ a0 for X is a cutting plane iff
atx∗ < a0 ∃ x∗ ∈ P

6 Exact Algorithms

6.1 Branch-and-Bound

Because of math, solving mixed integer programs (MIPs) is NP-hard. We use the branch-and-bound
algorithm to recursively split problems into sub-problems and then try to find a solution for the MIP
using LPs.

We keep a list of all current sub-problems in a list (“open”) and select a sub-problem S. We consider
the LP relaxation of S. If S is infeasible or worse than the current best solution, we discard and
close S. If the solution is integral, we save the solution as our current best solution (“incumbent”).
Otherwise we split S into sub-problems and put those in the list. When all those subproblems are
closed, close S. We do this until the list of subproblems is empty.

12

In this way, we explore the tree of subproblem so-
lutions step by step. But using the upper bound
z, we can prune nodes: If a subproblem has a
fractional value that is not better than zIP, we
can ignore it and its children (their values are at
least as high). Finally, the LP relaxation values
of open subproblems with the current zIP gives
us the gap during the execution.

Theorem: Branch-and-Bound Gap

Let zIP be the upper bound of closed
node’s values, and zLP the minimum LP
relaxation value of all open subproblems.

gap = |zIP−zLP|
|zLP|

.

Algorithm: Branch-and-Bound

Input: IP min cTx, x ∈ X (bounded and feasible).

Output: Optimal integer solution x∗.

1. Set zIP ← ∞, let x∗ ← undefined.
At any point, zLP is the minimal LP relaxation value of all open subproblems.

2. For next new subproblem S: Solve its relaxation.

If infeasible: Close S.
If x̂ is integral and cT x̂ < zIP: Set zIP ← cT x̂, x∗ ← x̂. Close S. (better)
If x̂ is fractional and cT x̂ ≥ zIP: Close S. (pruning)
If x̂ is fractional and cT x̂ < zIP: Branch (add new open subproblems).

After all child LPs are solveda, close S.
3. Return x∗.

aA parent node is closed if all direct children’s LPs are solved (not necessarily closed).

Search Strategy The lecture discusses two strategies to find the next subproblem among the list of
open subproblems: Depth-first search (DFS), and best-first search (BestFS). DFS selects the deepest
sub-problem in the search tree first. This strategy is fast in finding feasible solutions, that however
may be of poor quality. BestFS selects the sub-problem with the smallest local dual bound first.
This gives a small search tree, but requires a lot of memory.

Branching Rule We can use several different branching rules to generate the subproblems.

• Selecting fractional variables: For xj /∈ Z+, we add either xj ≤ bxjc or xj ≥ dxje. If there are
several fractional variables, we compute a score of some kind and select the best.
• With most infeasible branching, we select the variable with the fractional part closest to

0.5. Formally, we select argminj min
{

xj − bxjc, dxje − xj
}

. Although popular, it’s poorly
performing.
• Another poorly performing alternative that is not so popular is least infeasible branching

where the the least fractional variable is selected.
• Then we have the method of pseudo costs where a success history of variables is tracked and

the success history is multiplied with the “fractionality”, i.e. the closeness of the fractional
part to 0.5.

6.2 Solving LPs With Exponentially Many Constraints

TSP example: Even the LP relaxation has too many constraints to be solved fast. To speed up the

13

solving of the LP relaxation, first relax (ignore) all subtour elimination constraints (SEC). Compute
the solution of the resulting LP and search the solution for subtours, which violate SECs. This is
done by finding minimum cuts in the support graph.

The support graph is the graph which has an arc for every decision variable with its value as weight.
Finding a minimum cut with value v in the support graph means finding a set of vertices which are
the most disconnected from the rest of the graph. If v < 2, a SEC is violated; thus add the violated
SEC to the LP and repeat. If v ≥ 2, no SEC is violated, thus the solution is optimal.

∑
e∈δ(S)

xe ≥ 2 ∀ S (V, |S| ≥ 3 (subtour elimination constraints of TSP)

We can also use valid inequalities (??) to strengthen LP relaxations. This is called cutting plane
method. Within branch-and-bound, this is called branch-and-cut.

6.3 Column Generation

Column generation is a method to address models where there are many more variables than
constraints. This occurs in e.g. our bin packing encoding (??). In practice most of the variables, that
are defined in an integer program are zero in the end. So the ide of column generation is to solve the
Lp with a small subset of variables, while assuming the others to be zero. Then the set of variables,
that the problem is solved for, is enlarged iteratively. More on this in OR3. When the LP relaxation
of each node branch-and-bound is solved by column generation, we call this branch-and-price.

6.4 0-1 Knapsack Problem with Bellman’s Equation

We can also solve optimisation problems without linear programming. A completely misnamed
technique called dynamic programming uses tables to solve a problem by memoisation. The Bellman-
Ford algorithm essentially uses dynamic programming to solve the shortest-path problem.

Recall the 0-1 Knapsack problem (??): We have n items of sizes ai, with profits pi and a capacity
of the knapsack of b. We want to find a profit maximizing subset of the items that respects the
capacity.

Bellman’s equation calculates the maximum profit using only the first j items and a capacity c:

j = 1 : f (1, c) =

{
0 for c = 0, . . . , a1 − 1,

p1 for c = a1, . . . , b.

j ≥ 2 : f (j, c) =

{ j does not fit︷ ︸︸ ︷
f (j− 1, c) for c = 0, . . . , aj − 1,

max(f (j− 1, c)︸ ︷︷ ︸
do not select j

, f (j− 1, c− aj) + pj︸ ︷︷ ︸
select j

) for c = aj, . . . , b.

14

Thus the optimal profit value is given by f (n, b). Consider
the table on the right: We want to compute the field on the
bottom right (f (n, b)) that contains the final profit value.

1. Fill in the first line: Zeros, from c = a1 enter p1.
2. For each next line j, calculate for all c the states (cells):

• While c < aj, copy from ↑ (j does not fit).
• Then, calculate max(↑, ↑⇔ +pj).

c = 0 c = 1 . . .
j = 1 0 0 p1

j = 2 0 0
. . . 0

The chosen items must be computed by tracing back the computation from the final state:

if f (j, c) =

j does not fit︷ ︸︸ ︷
f (j− 1, c) =⇒ xj = 0

if f (j, c) = f (j− 1, c− aj) + pj︸ ︷︷ ︸
select j

=⇒ xj = 1

7 Heuristics

Heuristics are algorithms that try to solve problems without some guarantees: Often, there is no
optimality guarantee for computed results, nor a guarantee on the runtime. And then the heuristic
may not even find a feasible solution. In practice, many heuristics are quite useful.

Heuristics can be classified into construction heuristics which build a solution from scratch and
improvement heuristics which improve an existing solution. Some heuristics are problem-specific, and
some are general heuristics for many kinds of problems.

Problem-specific heuristics One simple heuristic is the nearest neighbor heuristic for TSP where a TSP
tour is constructed by always choosing the nearest univisited vertex. More on TSP heuristics can be
found in our Logistics Systems Planning 1 Panikzettel.

The nearest neighbor heuristic is an example of a greedy heuristic: It always chooses the next best
solution, but that means it only ever reaches local optima, and not necessarily a global optimum.

It is a construction heuristic because it builds up a tour from scratch.

General Improvement Heuristics We have a bunch of general heuristics that (try to) improve existing
solutions.

Local search looks in the space around one existing feasible solution by trying some small changes
to the solution. This is repeated until no better solution can be found: we have reached a local
optimum. It’s also possible to choose worse solutions sometimes to escape a local optimum and try
to find a better one.

Tabu search is another general method.

Simulated annealing is a local search that accepts worsening solutions with a certain probability that
is initially very large and decreases with time. The method is named after the physical process
called “annealing” where metal is cooled slowly to strengthen it.

15

https://panikzettel.philworld.de/lsp1.pdf

Genetic algorithms mimic natural selection. A set of solutions called population is generated. Solutions
are combined in some way and then only the best are kept. This is repeated for some time to
generate good solutions.

Primal Heuristics in Branch-and-Bound Heuristics can also be applied to find integer solutions for
integer programs, supplementing branching. For example, rounding fractional values is very cheap,
but does not always work. Doing this repeatedly until a solution or infeasibility is found is called
diving.

Approximation Algorithms An α-approximation algorithm runs in polynomial time and always computes
solutions that are only α times worse than the optimal solution. One example is the amazing
Christofide’s approximation algorithm. We discuss it and many other approximation algorithms in our
Effiziente Algorithmen Panikzettel.

16

https://panikzettel.philworld.de/effi.pdf

	Introduction
	Mixed-Integer Linear Programs
	Modeling with Integer Linear Programs
	Minimum Cost (Bipartite) Matching Problem
	Transportation Problem
	Minimum Cost Network Flows
	Knapsack Problem
	Bin Packing Problem
	Location Problems
	Lot Sizing (sketch)
	Scheduling
	Minimum Spanning Tree
	Traveling Salesperson Problem
	Vehicle Routing Problem
	Capacity - CVRP

	Pickup and Delivery
	Time Windows - VRPTW

	Set Covering, Set Partitioning, Set Packing

	Modeling with Non-Linear Integer Programs
	Relaxations of Strength and Models
	Cutting Planes

	Exact Algorithms
	Branch-and-Bound
	Solving LPs With Exponentially Many Constraints
	Column Generation
	0-1 Knapsack Problem with Bellman's Equation

	Heuristics

