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1 Introduction

This Panikzettel is about the lecture Probabilistic Programming by Prof. Katoen held in the winter
semester 2018/2019.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

2 Markov Chains

Markov chains are essential in our definition of
the semantics of the pGCL probabilistic program-
ming language. A Markov chain is a transition
system with a state set, an initial state and a
transition probability function between states.

So instead of a simple transition relation between
states as in usual transition systems, transitions
now additionally have a probability. The proba-
bility of a transition from σ1 to σ2 is given by:

P(σ1)︸ ︷︷ ︸
Dist(Σ)

(σ2) ⊆ [0, 1]

If Σ is finite, we can also write P as a transi-
tion probability matrix. This matrix is a square,
stochastic matrix, i.e. each row sums to one.

Definition: Probability distribution

A probability distribution on a countable set
X is a function µ : X → [0, 1] ⊆ R such
that ∑x∈X µ(x) = 1.

We call { x | µ(x) > 0 } the support set of µ.
Let Dist(X) denote the set of probability
distributions on X.

Definition: Markov chain

A Markov chain (MC) D is a triple (Σ, σl , P):
• Σ being a countable set of states,
• σI ∈ Σ the initial state,
• P : Σ→ Dist(Σ) the transition probability

function.

A program execution will be a path through the
Markov chain. A path in a Markov chain is de-
fined as a (possibly infinite) sequence of states
where each single transition must have a proba-
bility larger than zero.

We define the cylinder set of a finite path π̂ as all
infinite paths with prefix π̂.

We can now define a probability distribution
on cylinder sets Pr. Given a path finite π̂,
Pr(Cyl(π̂)) is defined as the probability of the
transitions between the finite prefix path states.

Note that we define Pr only on cylinder sets, i.e.
sets of infinite paths. However, the product is
finite and only requires probabilities of the finite
path.

Definition: Paths

π = σ0σ1 . . . is a path through MC D where
P(σi, σi+1) > 0 ∀ i ∈N

Let Paths(D) denote the set of paths in D
starting in σI .

Definition: Cylinder set

Let π̂ = σ0σ1 . . . σn be a finite path in MC
D. Then we define the cylinder set Cyl(π̂):

Cyl(π̂) = { π ∈ Paths(D) | π̂ is a prefix of π }

Definition: Cylinder probability

Pr is the unique probability distribution on
cylinder sets. (P(σ0) = 1 iff σ0 = σI).

Pr(Cyl(σ0 . . . σn)) = ∏
0≤i<n

P(σi, σi+1)
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2.1 Reachability

With the definition of the probability of a path,
we now consider the more general problem of
reachability: What is the probability to reach a set
of states G ⊆ Σ in MC D?

In our definition of reachability, this asks for the
probability of all infinite paths containing a state
in G anywhere.

Definition: Reachability

Let MC D with countable state space Σ
and G ⊆ Σ the set of goal states. The event
eventually reaching G is defined by:

�G = { π ∈ Paths(D) | ∃ i ∈N. π[i] ∈ G }

If the Markov chain D has a finite state space, we can calculate the reachability probability
by solving a linear equation system. We write Dσ to mean the MC D with initial state σ and
Pr(σ |= �G) = Prσ(�G) = Pr({ π ∈ Paths(Dσ) | π ∈ �G }).

Theorem: Finite reachability solution

To solve Pr(σ |= �G), define
• Σ? = Pre∗(G) \ G, the set of states that can reach G in > 0 steps,
• A = (P(σ, τ))σ, τ∈Σ? , the transition probabilities in Σ?, and
• b = (bσ)σ∈Σ? , the probabilities to reach G in exactly one step, i.e. bσ = ∑γ∈G P(σ, γ).

Then x = (xγ)γ∈Σ? with xσ = Pr(σ |= �G) is the unique solution of x = A · x+ b or, equivalently (I−
A) · x = b.

2.2 State Classification

We will now classify states based on recurrence:
Whether the MC is almost sure to return to a
state (recurrent) or not (transient).

Note that the first visit probability requires a first
visit, so only paths that contain τ exactly once at
their end are considered.

The return probability also requires a first return.
It can be calculated by summing up all first visit
probabilities.

We now call a state σ recurrent if fσ = 1 and
transient if fσ < 1. For a transient state σ, we say
the MC almost surely returns to σ.

Definition: First visit probability

Let states σ, τ ∈ Σ.

We define f (n)σ,τ as the probability of a first
visit to τ after exactly n steps from σ.

Definition: Return probability

Let states σ, τ ∈ Σ.

The return probability f (n)σ is defined as the
probability of the first return to σ (from σ)
after exactly n steps. This is equivalent to:

fσ = ∑∞
i=1 f (n)σ,σ .
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For a recurrent state σ, we also define a mean
recurrence time: The expected number of steps
between two successive visits to σ.

This gives rise to the terms null and postive re-
current. It takes infinite on average to return to
a null recurrent state, while positive recurrent
states have a finite mean recurrence time.

Definition: Mean recurrence time

The mean recurrence time mσ of a recurrent
state σ is mσ = ∑∞

n=1 n · f (n)σ

If mσ < ∞, we call mσ positive recurrent,
otherwise null recurrent.

If the MC is finite, then we have a few properties
w.r.t. recurrence:

1. Every state in a finite MC is either positive
recurrent or transient.

2. At least one state in a finite MC is positive
recurrent.

3. A finite MC has no null recurrent states.

To show these properties, we use Foster’s theo-
rem.

Theorem: Foster’s theorem

A countable Markov chain is non-dissipative
if almost every infinte path eventually
enters and remains in positive recurrent
states.

If the following conditions hold, the
MC is non-dissipative: ∑j≥0 j · P(i, j) ≤
i ∀ states i

We can also classify Markov chains by periodicity.
The definition is a bit tricky, so read it carefully.

Further a state is ergodic if it is positive and ape-
riodic. An MC is ergodic if all its states are
ergodic.

Definition: Periodic state

A state σ is periodic if f (n)σ > 0 implies n =

k · d where period d > 1. A state is aperiodic
otherwise.

At this point we may notice that mutually reachable states must have the same types. More formally,
if σ and τ are two mutually reachable states, then being transient, null-recurrent, positive recurrent
and d-periodic holds for τ if the respective property holds for σ.

If a MC is irreducible, that is all states are mutually reachable, we can use Markov’s theorem.

Theorem: Markov’s theorem

A finite, irreducible MC D is positive recurrent.

If D is also aperiodic, then D is ergodic and P∞ = limn→∞ Pn =

v
...
v

 where v =
(

1
m1

, . . . , 1
mk

)
and k = |Σ|.

The stationary distribution of MC D is a probability vector x where x = x · P.

xσ = ∑
τ∈Σ

xτ · P(τ, σ) iff xσ · (1− P(σ, σ))︸ ︷︷ ︸
outflow of σ

= ∑
τ 6=σ

xτ · P(τ, σ)︸ ︷︷ ︸
inflow of γ

An irreducible, positive recurrent MC has a unique stationary distribution satisfying xσ = 1
mσ

for
every state σ. If P is ergodic, then each row of P∞ equals the limiting (stationary) distribution.

5



2.3 Rewards

We can also attach rewards to states of Markov
chains. The reward r(σ) is the reward earned
on leaving the state σ. We can also calculate a
cumulative reward for reachability.

Definition: MC with rewards

A reward MC is a pair (M, r) with D an MC
with state space Σ and a reward function
r : Σ→ R.

Definition: Cumulative reward for reachability

Let π = σ0 . . . σn be a finite path in (D, r) and G ⊆ Σ a set of target states with π ∈ �G. The
cumulative reward along π until reaching G is: rG(π) = r(σ0) + . . . + r(σk−1) where σi /∈
G for all i < k and σk ∈ G.

If π /∈ �G, then rG(π) = 0.

Definition: Expected reward for reachability

The expected reward for reachability until reaching G ⊆ Σ from σ ∈ Σ is:

ER(σ, �G) = ∑
π|=�G

Pr(π̂) · rG(π̂)

where π̂ = σ0 . . . σk is the shortest prefix of π such that σk ∈ G and σ0 = σ.

Definition: Conditional expected reward

Let ER(σ, �G|¬ � F) = ER(σ,�G∩¬�F)
Pr(¬�F) be the conditional expected reward until reaching G under

the condition that no states in F ⊆ Σ are visited.

3 Probabilistic GCL (pGCL)

Elementary ingredients for pGCL are

• Program variables x ∈ Vars whose values
are fractional numbers,
• Arithmetic expressions E over the program

variables,
• Boolean expressions G (guarding choice or

loop) over the program variables,
• Distribution expressions µ : Σ→ Dist(Q),
• Probability expressions p : Σ→ [0, 1] ∩Q.

Definition: pGCL syntax

skip empty statement

diverge divergence

x := E assignment

x :≈ µ random assignment

P1; P2 sequential composition

if (G) {P1} else {P2} choice

P1 [p] P2 probabilistic choice

while (G) {P} iteration

For random assignment x :≈ µ we evaluate the distribution expression µ in the curent program
state s. Then we sample from the resulting distribution µ(s) yielding value v with probability
µ(s)(v) and assign the value v to x.
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To prove correctness of programs we use formal semantics. There are different kind of semantics.
We use operational semantics of pGCL on Markov chains to model the execution behaviour of a
program.

Definition: pGCL operational semantics

The behaviour of a pGCL program P is modelled by the MC JPK:
• States are of the form

– 〈Q, s〉 where Q is the remaining program to be executed,
– or s =  for violation of an observation (observe (G)),
– or 〈sink〉 for successful program termination.

• s : Vars→ Q is a variable valuation.
• σI = 〈P, s〉 is the initial state where s fulfills the initial conditions.
• The transition relation→ is the smallest relation satisfying the SOS rules below.

The output of the program P is the unique probability distribution given by λs. Pr(s |= �〈↓, ·〉).

〈↓, s〉 → 〈sink〉 〈sink〉 → 〈sink〉

〈skip, s〉 → 〈↓, s〉 〈diverge, s〉 → 〈diverge, s〉

〈x := E, s〉 → 〈↓, s[x := s(JEK)]〉

µ(s)(v) = a > 0

〈x :≈ µ, s〉 a−→ 〈↓, s[x := v]〉

〈P [p] Q, s〉 p−→ 〈P, s〉 〈P [p] Q, s〉 1−p−−→ 〈Q, s〉

〈P, s〉 a−→ 〈P′, s′〉
〈P; Q, s〉 a−→ 〈P′; Q, s′〉

〈Q, s〉 a−→ 〈Q′, s′〉
〈↓; Q, s〉 a−→ 〈Q′, s′〉

s |= G
〈if (G) {P} else {Q}, s〉 → 〈P, s〉

s 6|= G
〈if (G) {P} else {Q}, s〉 → 〈Q, s〉

s |= G
〈while (G) {P}, s〉 → 〈P; while (G) {P}, s〉

s 6|= G
〈while (G) {P}, s〉 → 〈↓, s〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cpGCL (section ??) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s |= G
〈observe (G), s〉 → 〈↓, s〉

s 6|= G
〈observe (G), s〉 → 〈 〉

〈 〉 → 〈sink〉
〈P, s〉 → 〈 〉
〈P; Q, s〉 → 〈 〉

pGCL as defined above does not feature recursion, but we define two additional statements to
define functions, which we call processes. We write P = P1 to define a process P that executes
program P1 and write call P to call P. Introducing recursion does not increase expressive power.
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4 Domain Theory

Definition: Partial order

A partial order (D,v) has a domain D and a
relation v ⊆ D× D, where ∀ d1, d2, d3 ∈ D:

Reflexivity

d1 v d1

Transitivty

d1 v d2 ∧ d2 v d3 ⇒ d1 v s3

Antisymmetry

d1 v d2 ∧ d2 v d1 ⇒ d1 = d2

In pGCL semantics, loops are defined as fixed
points of functions. We will need domain theory
to prove existence of these fixed points and to
approximate them.

A complete lattice is a partial order with upper
bounds for all subsets (also called supremum).
Equivalently, one can require lower bounds for
all subsets (also called infimum).

A chain S ⊆ D comprises only ordered elements:
∀ d1, d2 ∈ S: d1 v d2 or d2 v d1.

If F : D → D′ is a monotonic function between
complete lattices and S ⊆ D is a chain in D, then
F(S) := { F(d) | d ∈ S } is a chain in D′ and⊔

F(S) vD′ F(
⊔

S).

Definition: (Least) Upper bound,
(Greatest) Lower bound

Let (D,v) be a partial order with S ⊆ D.

1. d ∈ D is an upper bound of S (S v d) if
s v d ∀ s ∈ S.

2. d is a least upper bound of S (d =
⊔

S) if
d v d′ for every upper bound d′ of S.

Analogous definitions for lower bound and
greatest lower bound.

Definition: Complete lattice

A complete lattice is a
• partial order (D,v),
• such that all S ⊆ D have

least upper bounds, or equivalently,
greatest lower bounds.

The least element is ⊥ :=
⊔

∅.
The greatest element is > :=

d
∅.

Definition: Monotonicity

Let (D,v) and (D′,v′) be partial orders.
Φ : D → D′ is monotonic if ∀ d1, d2 ∈ D:
d1 v d2 ⇒ Φ(d1) v′ Φ(d2).

A (Scott-)continuous function is a generalisation
of the continuity we know from analysis to com-
plete lattices. Every continuous function is mono-
tonic.

Definition: Fixed point

d is a fixed point of Φ : D → D if Φ(d) = d.

Definition: Scott continuity

Let (D,v) and (D′,v′) be complete lat-
tices and F : D → D′ monotonic. F is
called continuous if, for every non-empty
chain S ⊆ D, F(

⊔
S) =

⊔
F(S).

Theorem: Kleene’s fixpoint theorem

Let (D,v) be a complete lattice and Φ : D → D continuous.
Then F has a least fixed point lfp F and a greatest fixed point gfp F:

lfp F := sup
n∈N

Fn(⊥) and gfp F := inf
n∈N

Fn(>)

where F0(d) = d and Fn+1(d) = F(Fn(d)).
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5 Probabilistic Weakest Preconditions

We assume program variables x ∈ Vars are in Q. We denote arithmetic expressions E over program
variables and boolean expressions over program variables G.

Usually µ is a distribution expression µ : Σ→ Dist(Q) and p : Σ→ [0, 1] ∩Q.

The expected value of a random variable f : X → R under distribution µ is defined by:

Eµ( f ) = ∑
x∈X

f (x) · µ(x) =
∫

X
f dµ

Note that the expectation below is a random variable, and distinct from an expected value.

Definition: Predicate

A predicate F maps program states to Booleans, i.e. F : S→ B.

Let P denote the set of all predicates and F v G iff F ⇒ G.

Definition: Expectation

An expectation f maps program states to R≥0 ∪ {∞ }, i.e. f : S→ R≥0 ∪ {∞ }.
Let E denote the set of all expectations and f v g if and only if f (s) ≤ g(s) for all s ∈ S.

Operations

(λs. k)(k) = 0 f [x := E](s) =

{
f (y) if x 6= y
JEKs otherwise

(c · f )(s) = c · f (s) ( f + g)(s) = f (s) + g(s)

(E,v) is a complete lattice with the least element λs. 0 =: 0. The supremum of a subset S ⊆ E is
given by sup S = sup f∈S f .

We define predicate and expectation transformers as total functions between predicates P or expecta-
tions E respectively.

Definition: Weakest pre-expectation

For probabilistic program P and e, f ∈ E, the
expectation transformer wp(P, ·) : E → E

is defined by wp(P, f ) = e iff e maps each
initial state s to the expected value of f after
executing P on s.

wp(P, f ) = λs.
∫

S
f dPs

where Ps is the distribution over the final
states (reached on termination of P) when
executing P on the initial state s.

Definition: Weakest liberal pre-expectation

The weakest liberal precondition is the ex-
pected value of f after executing P on s
plus the probability that P diverges on
s.

wlp(P, f ) = λs.
∫

S
f dPs +

(
1−

∫
S

1dPs

)

wlp(P, ·) : E≤1 → E≤1 is defined
on bounded expectations, i.e. E≤1 =

{ f ∈ E | f v 1 }.
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5.1 Expectation Transformer Semantics of pGCL

P wp(P, f ) wlp(P, f )

skip f

diverge 0 1

x := E f [x := E]

observe (G) [G] · f

x :≈ µ λs.
∫

Q
(λv. f (s[x := v])) dµs

P1; P2 wp(P1, wp(P2, f )) wlp(P1, wlp(P2, f ))

if (G) {P1} else {P2} [G] ·wp(P1, f ) + [¬G] ·wp(P2, f ) [G] ·wlp(P1, f ) + [¬G] ·wlp(P2, f )

P1 [p] P2 p ·wp(P1, f ) + (1− p) ·wp(P2, f ) p ·wlp(P1, f ) + (1− p) ·wlp(P2, f )

while (G) {P} lfp X. ([G] ·wp(P, X) + [¬G] · f ) gfp X. ([G] ·wlp(P, X) + [¬G] · f )

Theorem: Properties of wp

• Continuity:
wp(P, ·) is continuous on (E,v).

• Monotonicity:
f ≤ g implies wp(P, f ) ≤ wp(P, g).

• Feasibility:
f ≤ k implies wp(P, f ) ≤ k.

• Linearity: ∀ r ∈ R≥0

wp(P, r · f + g) = r ·wp(P, f ) + wp(P, g).
• Strictness:

wp(P, 0) = 0.

Warning! Not all properties hold for programs with
observe (G).
E.g. co-strictness: wlp(observe (false), 1) = 0.

Theorem: Properties of wlp

• Continuity:
wlp(P, ·) is continuous on (E≤1,v).

• Monotonicity:
f ≤ g implies wlp(P, f ) ≤ wlp(P, g).

• Superlinearity: ∀ r ∈ R≥0

wlp(P, r · f + g) ≤ r · wlp(P, f ) +

wlp(P, g).
• Duality:

wlp(P, f ) = wp(P, f ) + (1−wp(P, 1))
• Coincidence: for a.s.-terminating P

wlp(P, f ) = wp(P, f )
• Co-strictness:

wlp(P, 1) = 1.

wp(P, 1) = termination probability of program P.

Using Kleene’s Fixpoint Theorem, we can calculate the fixed points for the loops.
For lfp Φ = supn∈N Φn(⊥) and for gfp Ψ = infn∈N Ψn(>).

6 Loops and Proof Rules

Reasoning about loops is the hardest task in program verification. The weakest preconditions of
loops are defined as fixed points and can be approximated iteratively. But recognizing patterns to
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yield a closed formula and finding its fixed point is undecidable. We try to capture the effect of a
loop by using a loop invariant.

We summarise the results from this section in the table below.

lower bounds upper bounds
wp wp-ω-subinvariant wp-superinvariant
wlp wlp-subinvariant wlp-ω-superinvariant

6.1 Predicate Invariants

We start with non-probabilistic loop invariants.
A non-probabilistic loop invariant I for a postcon-
dition F is a predicate that holds whenever the
loop guard holds, that establishes the postcon-
dition after termination, and also holds during
execution of the loop body.

Definition: Loop invariant

A predicate I ∈ P is a loop invariant if:
• G ⇒ I,
• ¬G ∧ I ⇒ F, and
• G ∧ I ⇒ wlp(P, I).

Why does this definition make sense? The the-
orem on the right assures us that a predicate
invariant is always a sound approximation of the
loop. We have shown this directly for probabilis-
tic programs with (non-probabilistic) predicate
invaraints.

Ψ[F] is the wlp-characteristic function of the prob-
abilistic loop for postcondition [F].

Theorem: Invariants make sense

For I, F ∈ P and probabilistic loop
while (G) {P} it holds:

¬G ∧ I ⇒ F and G ∧ I ⇒ wlp(P, I)

iff
[I] v Ψ[F]([I])

6.2 Probabilistic Invariants

Invariants that are not predicates are a bit harder: We use super- and subinvariants. We need
this distinction because only wp-superinvariants are useful for upper bounds for wp, and wlp-
subinvariants are useful for lower bounds for wlp. The other bounds require the respective
ω-invariants.

Definition: Probabilistic invariants

Let Φ f be the wp-characteristic function of P′ = while (G) {P} with respect to post-
expectation f ∈ E and let I ∈ E.
• I is a wp-superinvariant of P′ w.r.t. f iff Φ f (I) ≤ I.
• I is a wp-subinvariant of P′ w.r.t. f iff I ≤ Φ f (I).

Analogously defined for wlp with bounded expectations E≤1: Replace Φ f by Ψ f .
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With Park’s lemma, we can do (co-)induction to
find bounds on weakest pre-expectations. Induc-
tion gives us upper bounds for wp:

Φ f (I) ≤ I︸ ︷︷ ︸
wp-superinvariant

implies wp(while (G) {P}, f ) ≤ I

Co-induction gives us lower bounds for wlp:

I ≤ Ψ f (I)︸ ︷︷ ︸
wlp-subinvariant

implies I ≤ wlp(while (G) {P}, f )

Theorem: Park’s lemma

Let (D,v) be a complete lattice and Φ :
D → D continuous. Then:

∀ d ∈ D. Φ(d) v d implies lfp Φ v d

∀ d ∈ D. d v Φ(d) implies d v gfp Φ

Note that in general, versions of the equations
above with v lfp and gfp v are not valid!

We can verify a loop invariant I by pushing it through the characteristic function of the loop once,
i.e. Φ(I). For induction, we then only need to verify that Φ(I) v I, and for co-induction I v Φ(I).

6.3 ω-invariants

ω-invariants give us the missing two bounds we did not get from Park’s lemma. wp-ω-subinvariants
give lower bounds for wp, and wlp-ω-superinvariants give upper bounds for wlp.

Definition: ω-invariants

Let n ∈N, f ∈ E and Φ f be the wp-characteristic function of the loop while (G) {P}.
Monotonically increasing (v) sequence (I)n∈N is a wp-ω-subinvariant of the loop w.r.t. f iff

I0 ≤ Φ f (0) and In+1 ≤ Φ f (In) for all n ∈N.

wlp-ω-superinvariants are defined similarly, where (I)n∈N ∈ EN
≤1 is monotonically decreasing

and Φ f is replaced by Ψ f .

As before, we have two soundness statements for ω-invariants.

Theorem: Bounds on loops using ω-invariants

1. Let (I)n∈N be a wp-ω-subinvariant of while (G) {P} w.r.t. f ∈ E. Then:

sup
n∈N

In ≤ wp(while (G) {P}, f )

2. Let (I)n∈N be a wlp-ω-superinvariant of while (G) {P} w.r.t. f . Then:

wlp(while (G) {P}, f ) ≤ inf
n∈N

In

To verify loops using ω-invariants, the following procedure can be used:

1. Find an appropriate ω-invariant (I)n∈N.
2. Check that (I)n∈N is indeed an ω-invariant:

a) Push In through the characteristic function
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b) Check whether this took us above In+1 (for wp) or below In+1 (for wlp) in the partial
order ≤.

3. Find the supremum (for wp) or the infimum (for wlp) of (I)n∈N as a lower bound respective
upper bound for wp/wlp.

7 Conditioning

We now add observe (G) statements. The idea is that only executions that satisfy all observe (G)
during execution contribute to the resulting probability distribution. For this, we need new rules to
the operational semantics to pGCL (already on ??).

7.1 Conditional Expectations

Then we need normalisation: We want to divide by the probability of not satisfying the observe
statements. We define cwp: as a tuple ( f , g). The intuitive interpretation is that the resulting
expected value is given by f /g.

Definition: Conditional expectation

A conditional expectation is a pair ( f , g) with
expectation f ∈ E and bounded expecta-
tion g ∈ E≤1.

Let C = E×E≤1 denote the set of condi-
tional expectations.

( f , g)E ( f ′, g′) iff f ≤ f ′ ∧ g ≥ g′

While we have explicit semantics for cwp, it’s
simplest to just always use the Decoupling prop-
erty and calculate wp and wlp separately.

Theorem: Properties of cwp

Let z, z′ = ( f , g), ( f ′, g′) ∈ C.

• Decoupling:

cwp(P, ( f , g)) = (wp(P, f ), wlp(P, g)).

• Continuity:
cwp(P, z) is continuous on (C,E).

• Monotonicity:
zE z′ implies cwp(P, z)E cwp(P, z′).

• Linearity: ∀ r ∈ R≥0
cwp(P, (r · f + g, g′)) = (r ·wp(P, f ) + wp(P, g), wlp(P, g′)).

• Strictness:
cwp(P, (0, 1)) = (0, g) where g = wlp(P, 1).

• Feasibility: If ∀ s ∈ S. g(s) > 0⇒ f (s)/g(s) exists,

∀ s ∈ S. g′(s) = 0 implies f ′(s) = 0
where cwp(P, ( f , g)) = ( f ′, g′).

7.2 Program Transformations

It turns out observe (G) is entirely syntactic sugar: We can transform a program with observe (G)
statements to one without while preserving semantics.

7.2.1 Rejection Sampling

The idea is to restart an infeasable run until all observe (G) statements are fulfilled.

We introduce a flag variable to signal violation of an observe (G) and new variables sxi for every
variable xi in the original program. The sxi variables are used to reset the variables xi in case an
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observe (G) is violated and we need to restart. Initially store the value of x1 in xs1 and reset x1 to
xs1 in the beginning of every loop iteration.

We modify the original program prog to mprog:

observe (G) f lag :=!G || f lag

diverge if (! f lag) {abort} else {}
while (G) {prog} while (G && ! f lag) {prog}

The result is something like:

sx1 , . . . := x1 , . . . ;
f l a g := true ;
while( f lag){

f lag := f alse;
x1 , . . . := sx1 , . . . ;
mprog ;

}

This transformation is correct: For a cpGCL program P and P̂ the result of the above transformation
we have:

cwp(P, ( f , 1)) = wp(P̂, f )

We can also go the other way: If a loop is iid,
then cwp(repeat P until (G), ( f , g)) equals
cwp(P; observe (G), ( f , g)).

iid means that G holds after P independently of
the expected value of f after P.

Definition: iid-loop

A loop while (G) {P} is iid iff for any ex-
pectation f :

wp(P, [G] ·wp(P, f )) = wp(P, [G]) ·wp(P, f ).

7.2.2 Hoisting

A second option to deal with observe-statements is to use hoisting. It’s a wee bit more complicated
and the correctness theorem only holds for programs with at least one feasible run. Hoisting
removes the observe-statements and transforms the probabilities accordingly.

Definition: Hoisting

T(skip, f ) = (skip, f )

T(diverge, f ) = (diverge, 1)

T(x := E, f ) = (x := E, f [x := E])

T(observe (G), f ) = (skip, [G] · f )

T(P1; P2, f ) = (Q1; Q2, h) where (Q2, g) = T(P2, f ) and (Q1, h) = T(P1, g)

T(if (G) {P1} else {P2}, f ) = (if (G) {Q1} else {Q2}, [G] · g + [¬G] · h)
where (Q1, g) = T(P1, f ) and (Q2, h) = T(P2, f )

T(P1 [p] P2, f ) = (Q1 [q] Q2, p · g + (1− p) · h) where q =
p · g

p · g + (1− p) · h ,

(Q1, g) = T(P1, f ) and (Q2, h) = T(P2, f )

T(while (G) {P}, f ) = (while (G) {Q}, g) where g = gfp H

with H(h) = [G] · (π2 � T)(P, h) + [¬G] · f and (Q, ·) = T(P, g)
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Theorem: Correctness of hoisting

For any cpGCL program P with at least one feasible run and f ∈ E:

cwp(P, ( f , 1)) = wp(Q, f ) with T(P, 1) = (Q, h).

The component h represents the probability that P satisfies all its observe-statements.

8 Arithmetical Hierarchy

In this section, we rank different undecidable decision problems. Although each of them is
undecidable, some are still harder than others. The arithmetical hierarchy classifies decision problems
by the complexity of characterising formulas in first-order Peano arithmetic.

Definition: Arithmetical hierarchy

The arithmetical hierarchy consists of three types of classes: Σn, Πn and ∆n for each n ∈N.

Classes Σn, where R is a decidable relation:

Σn = {A | A = {x | ∃y1∀y2∃y3...∀/∃yn : (x, y1, ..., yn) ∈ R}}.

Classes Πn, where R is a decidable relation:

Πn = {A | A = {x | ∀y1∃y2∀y3...∀/∃yn : (x, y1, ..., yn) ∈ R}}

Classes ∆n are defined as ∆n = Σn ∩Πn.

Theorem: Elementary properties of the arithmetical hierarchy

• ∆1 is the class of decidable problems.
• Classes Σn, Πn and ∆n are closed under conjunction and disjunction.
• ∆n is closed under negation.
• The classes Σn and Πn are complementary.
• There is a strict relation between classes: Σn ⊂ ∆n+1 ⊂ Πn+1 and Πn ⊂ ∆n+1 ⊂ Σn+1.
• If problem A is Σn-complete, then its complement is Πn-complete, and vice versa.

As with polynomial complexities, we also have a
notion of completeness of a problem in a certain
complexity class here.

By Davis’ theorem, we know that if problem A is
Σn-complete, then A ∈ Σn \Πn, and vice versa.

Some simple examples for well-known decision
problems follow.

Definition: Reducibility and completeness

A ⊆ X is reducible to B ⊆ X if there is a
computable function f : X → X such that

∀ x ∈ X. x ∈ A iff f (x) ∈ B.

Decision problem A is Γn-hard iff every
B ∈ Γn can be reduced to A.

A is Γn-complete iff A ∈ Γn and A is Γn-
hard.

15



Halting problem (H ∈ Σ1, Σ1-complete) Program P, state s. (P, s) ∈ H iff: ∃k ∈ N, s′ ∈
S.P terminates on input s in k steps in state s′.

Universal halting problem (UH ∈ Π2, Π2-complete) Program P, state s. P ∈ UH iff: ∀s ∈ S.(P, s) ∈
H.

Co-finiteness problem (COF ∈ Σ3, Σ3-complete) Program P. P ∈ COF iff: { s ∈ S | (P, s) ∈ H } is co-finite

where a subset A of X is co-finite if X \ A is finite.

The important results are about the decision
problems LEXP, REXP, EXP and FEXP.

LEXP is Σ1-complete: ∃y. q <

∑
y
k=0 wp=k(P, f )(s)

REXP is Σ2-complete: ∃δ > 0. ∀y : q − δ >

∑
y
k=0 wp=k(P, f )(s)

EXP is Π2-complete. FEXP is Σ2-complete.

Note the δ in REXP which is (intentionally) missing in

LEXP.

Definition: The decision problems LEXP,
REXP, EXP and FEXP

Let P be a pGCL program, s ∈ S a variable
solution, q ∈ Q≥0 and f : S → Q≥0 a
computable function. Then:

(P, s, f , q) ∈ LEXP iff q < wp(P, f )(s)

(P, s, f , q) ∈ REXP iff q > wp(P, f )(s)

(P, s, f , q) ∈ EXP iff q = wp(P, f )(s)

(P, s, f ) ∈ FEXP iff wp(P, f )(s) < ∞

9 Almost-Sure Termination

With probabilistic programs, termination has a
few different degrees:

• Certain termination: Literally every single pro-
gram execution terminates.
• Almost-sure termination: Termination with

probability one, but there may still be runs
with infinite runtime.

+ Positive almost-sure termination: Expected
finite number of steps.

+ Null almost-sure termination: Expected in-
finite number of steps.

AST and UAST are both Π2-complete. UPAST
is Π3-complete. PAST is Σ2-complete:
∃c. ∀l ert≤l(P, s) < c.

Definition: Decision problems AST and
UAST

Let P be a program, s ∈ S a valuation.

(P, s) ∈ AST iff wp(P, 1)(s) = 1

P ∈ UAST iff ∀s ∈ S.(P, s) ∈ AST

Definition: Decision problems PAST and
UPAST

Let P be a program, s ∈ S a valuation.

(P, s) ∈ PAST iff ert(P, s) < ∞

P ∈ UPAST iff ∀s ∈ S.(P, s) ∈ PAST
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9.1 Proving Termination

Our aim is to prove termination by using a vari-
ant function (or ranking function) for the state
space of a program that is monotonically de-
creasing in every loop iteration. The function
deacreases with respect to a (strict) well-founded
relation.

We know that every universally terminating
(non-probabilistic) loop while (G) {P} has a
variant function.

Below are two theorems: The first is to prove
positive almost-sure termination using a ranking
super-invariant. The second theorem is for (posi-
tive/null) almost-sure termination and requires
a variant I, a decrease probability function p and
a decrease function d.

Definition: Well-founded relation

Let (D,@) be a strict partial order. The
relation @ is well-founded if there is no
infinite sequence d1, d2, d3, ... with di ∈ D
such that di @ di+1 for all i ∈N.

Definition: Variant function

A variant function V : S→ R for GCL-loop
while (G) {P} is a function that satisfies
for every s ∈ S:
• If s |= G, then the execution of P on s

terminates in a state t with:

V(t) ≤ V(s)− ε for some fixed ε > 0

• If V(s) ≤ 0, then s 6|= G.

Theorem: Proving positive almost-sure termination (PAST)

Let while (G) {P} be a loop where P terminates universally certainly (P is loop-free), and
let I ∈ E be a ranking super-invariant of the loop w.r.t. expectation 0, i.e., I ≤ ∞ and for some
constants ε and K with 0 < ε < K it holds:

1. [¬G] · I ≤ K
2. [G] · K ≤ [G] · I + [¬G]

3. Φ(I) ≤ [G] · (I − ε)

Then: while (G) {P} terminates universally positively almost-surely.

Theorem: Proof rule for almost-sure termination (AST)

Let I ∈ P, (variant) function V : S→ R≥0, (probability) function p : R≥0 → (0, 1] be antitone,
(decrease) function d : R≥0 → R≥0 be antitone. If:

1. [I] is a wp-subinvariant of while (G) {P} w.r.t. [I]
2. V = 0 indicates termination, i.e. [¬G] = [V = 0]
3. V is a super-invariant of while (G) {P} w.r.t. V
4. V satisfies the progress condition

p ◦ (V · [G] · [I]) ≤ λs. wp(P, [V ≤ V(s)− d(V(s))])(s)

Then: The loop while (G) {P} terminates from any state s satisfying the invariant I, i.e.,

[I] ≤ wp(while (G) {P}, 1)
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10 Expected Runtimes

Definition: Runtimes

A runtime t : S→ R≥0 ∪ {∞ }.
Let T denote the set of all runtimes.

In our time model we use a single time unit for
skip, any assignment, evaluating a guard or prob-
abilistic choice. Sequential composition does not
take any time.

For every pGCL program P and input state s:

ert(P, 0)(s) < ∞︸ ︷︷ ︸
positive a.s.-termination on s

implies wp(P, 1)(s) = 1︸ ︷︷ ︸
a.s.-termination on s

And:

ert(P, 0) < ∞︸ ︷︷ ︸
universal positive a.s.-termination

implies wp(P, 1) = 1︸ ︷︷ ︸
universal a.s.-termination

Theorem: Properties of cwp

• Continuity:
ert(P, t) is continuous on (T,≤).

• Monotonicity:
t ≤ t′ implies ert(P, t) ≤ ert(P, t′).

• Constant propagation:
ert(P, k + t) = k + ert(P, t).

• Preservation of ∞:
ert(P, ∞) = ∞.

• Connection to wp:
ert(P, t) = ert(P, 0) + wp(P, t).

• Affinity:
ert(P, a · t + t′) = ert(P, 0) + a · ert(P, t) + ert(P, t′).

P ert(P, t)

skip 1 + t

diverge ∞

x := E 1 + t[x := E]

x :≈ µ 1 + λs.
∫

Q
(λv. t(s[x := v])) dµs

P1; P2 ert(P1, ert(P2, t))

if (G) {P1} else {P2} 1 + [G] · ert(P1, t + [¬G] · ert(P2, t)

P1 [p] P2 1 + p · ert(P1, t) + (1− p) · ert(P2, t)

while (G) {P} lfp X.(1 + [G] · ert(P, X) + [¬G] · t)

We can also add rewards corresponding to the runtimes to the Markov chain for a program. State
〈↓, s〉 gets reward t(s). State 〈diverge, s〉 gets reward ∞. State 〈P1; P2, s〉 gets reward 0. All other
states get reward 1. Then: ert(P, 0)(s) = ERJPK(s, �sink).

Using the cwp-calculus, we were able to show that PAST is not compositional, i.e. for programs P1,
P2 that are positive a.s.-terminating, P1; P2 is not necessarily also positive a.s.-terminating.

Similar to wp-calculus, we can also define runtime-ω-subinvariants for lower bounds and runtime-
superinvariants for upper bounds (see ??).
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11 Bayesian Networks

A more traditional approach to statistical inference are Bayesian networks. A Bayesian network is a
directed acyclic graph of nodes representing random variables. Edges represent causal relationships.
Each random variable has an associated conditional probability table that maps all values of a node’s k
parents to a probability distribution. If there are no parents, then Θv : ()→ Dist(D) ≡ Dist(D).

Definition: Bayesian network

A Bayesian network (BN) is a tuple B = (V, E, Θ) where
• (V, E) is a directed acyclic graph with

– finite V in which each v ∈ V represents a random variable with values from finite
domain D, and

– (v, w) ∈ E represents the (causal) dependencies of w on v.
• For each vertex v with k parents, the function Θv : Dk → Dist(D) is the conditional

probability table of (the random variable represented by) vertex v.

w ∈ V is a parent of v ∈ V whenever (w, v) ∈ E.

The joint probability function of a Bayesian network gives a semantics to the network: By simple
recursive multiplication of probabilities, we can calculate any joint probability of variables in the
network.

Definition: Joint probability function of a BN

Let B = (V, E, Θ) be a BN, and W ⊆ V be a downward closed set of vertices where w ∈ W
has value w ∈ D. The (unique) joint probability function of BN B in which the nodes in W have
values W equals:

Pr(W = W) = ∏
w∈W

Pr(w = w | parents(w) = parents(w)) = ∏
w∈W

Θw(parents(w))(w).

The conditional probability distribution of W ⊆ V given observations on a set O v V is given by

Pr(W = W | O = O) =
Pr(W = W ∧O = O)

Pr(O = O)
.

11.1 Conditional Independence

Two independent events may become dependent given some observation.

Definition: Conditional independence

Let X, Y, Z be (discrete) random variables. X is conditionally independent of Y given Z, denoted
I(X, Z, Y), whenever:

Pr(X ∧Y | Z) = Pr(X | Z) · Pr(Y | Z) or Pr(Z) = 0.
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Theorem: Graphoid axioms

Conditional independence satisfies the following axioms for disjoint sets of random variables
W, X, Y, Z:

1. Symmetry: I(X, Z, Y) iff I(Y, Z, X)

2. Decomposition: I(X, Z, Y ∪W) implies (I(X, Z, Y) and I(X, Z, W))

3. Weak union: I(X, Z, Y ∪W) implies I(X, Z ∪Y, W)

4. Contraction: (I(X, Z, Y) and I(X, Z ∪Y, W)) implies I(X, Z, Y ∪W)

5. Triviality: I(X, Z, ∅)

D-separationa is a sufficient condition for condi-
tional independence. Define all undirect paths
in the DAG of the BN as a pipe and every vertex
on a path as a valve. Valves are either open or
closed. A pipe is blocked if at least one valve on
the path is closed.

A valve v is closed for a variable set Z:

1. Sequential: v ∈ Z is a child of one neigh-
bour and a parent of the other neighbour.

2. Divergent: v ∈ Z is a parent of both neigh-
bours.

3. Convergent: neither v nor any of its directly
reachable descendants are in Z.

The algorithm on the right is a polynomial time
check for d-seperation: dsepG(X, Y, Z) iff X and
Y are disconnected in pruneX,Y,Z(G).

And since dsepG(X, Y, Z) implies I(X, Y, Z), we
can sometimes provide a guarantee that sets of
nodes are conditionally independent in polyno-
mial time.

asee also our Artifical Intelligence Panikzettel for another
take at d-separation.

Definition: d-seperation

Let X, Y, Z be disjoint sets of vertices in the
DAG G. X and Y are d-seperated by Z in G,
denoted dsepG(X, Z, Y), iff:

Every (undirected) path between a vertex
in X and a vertex in Y is blocked by some
vertex in Z.

Algorithm: d-separation polynomial time

Input: DAG G and disjoint sets of vertices
X, Y, Z.

Output: DAG pruneX,Y,Z(G).

1. Repeat as long as possible:
Eliminate any leaf vertex v from G with
v /∈ X ∪Y ∪ Z.

2. Eliminate all edges emanating from ver-
tices in Z.

3. Return remaining graph.

The complexity of inference on a BN is measured in terms of the Markov blanket, a degree of
dependence in the BN. The less dependent the BN is the simpler is the probabilistic inference.

Definition: Markov blanket

The Markov blanket for a vertex v in a BN is the set ∂v of vertices composed of v, v′s parents,
its children, and its children’s other parents.

The average Markov blanket of BN B is the average size of the Markov blanket of all its
vertices, that is, 1

|V| ∑v∈V |∂v|.

Every set of vertices in a BN is conditionally independent of v when conditioned on ∂v. Thus, for
distinct vertices v and w:

Pr(v | w ∧ ∂v) = Pr(v | ∂v) which is equivalent to I({v}, {w}, Z).
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11.2 Probabilistic Inference

The decision problems TI and STI are PP-
complete.

PP (Probabilistic Polynomial-Time) is the class of
decision problems solvable by a probabilistic Tur-
ing machine in polynomial time with an error
probability < 1

2 .

We have shown PP-completeness by reducing
MAJSAT, another PP-complete problem, to STI.
And since STI is a special case of TI, MAJSAT
can also be reduced to STI.

Definition: Probabilistic inference problems

Let B be a BN with set V of vertices, the
evidence E ⊆ V and the questions Q ⊆ V.

The probabilistic inference problem is to deter-
mine the conditional probability:

Pr(Q = q | E = e) =
Pr(Q = q ∧ E = e)

Pr(E = e)

Variants for probability p ∈ Q∩ [0, 1):

• Threshold Inference (TI):
Is Pr(Q = q | E = e) > p?
• Simple TI (STI):

Is Pr(E = e) > p?

BNs correspond to “simple” probabilistic programs as there is no “data-flow” between loop
iterations. Such programs are called iid. If while (G) {P} is iid for expectation f , it holds for every
state s:

wp(while (G) {P}, f )(s) = [G](s) +
wp(P, [¬G] · f )(s)
1−wp(P, [G])(s)

+ [¬G](s) · f (s)

where we let 0
0 = 0.

We can also use our ert-calculus to calculate the expected sample time for a BN. This is very helpful
to prove that there is no way the Windows printer troubleshooter will ever return a good result.
Similar to the wp-rule for iid-loops above, we have for a.s.-terminating iid loops:

ert(while (G) {P}, t) = 1 +
1 + ert(P, [¬G] · t)

1−wp(P, [G])
+ [¬G](s) · t.
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