
panikzettel.htwr-aachen.de

Social Networks2019 Panikzettel
Luca Oeljeklaus, Caspar Zecha, Philipp Schröer

Version 1 — 09.05.2025

Contents

1 Graphs 2
1.1 Adjacency Matrix . 3
1.2 Clustering Coefficient . 3
1.3 Small World Property . 3
1.4 Components and Paths . 4
1.5 Centrality Measures . 5

2 Network Models 7
2.1 Random Graphs . 7
2.2 Small-World Networks . 7
2.3 The Configuration Model . 7
2.4 The Barabási-Albert Model . 8
2.5 Network Robustness . 8

3 Mesoscopic Structure 9
3.1 Detecting Communities . 9
3.2 Cutting a Dendrogram . 10
3.3 Modularity . 10
3.4 Judging the Quality of Detected Communities . 11

4 Dynamics and Spreading 12
4.1 Infection Models . 12
4.2 Cascading Behaviour . 13
4.3 Weak Ties . 14

5 Link Prediction 14
5.1 Neighbourhood Approaches . 14
5.2 Path Approaches . 15

6 Directed and Signed Networks 16
6.1 Directed Networks . 16
6.2 Signed Networks . 16

1

https://panikzettel.htwr-aachen.de

7 Association Networks 17
7.1 Measuring Node Similarity . 17

8 Filtering 17

Introduction

This Panikzettel covers the lecture Social Networks, held in the summer semesters of 2019 and 2020
by Prof. Dr. Markus Strohmaier.

We have two Panikzettel on Social Networks! This one was mainly written in the summer semester
of 2019. Daniel Sous also wrote one in 2020: Social Networks 2020 Panikzettel.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

1 Graphs

A simple graph is a tuple G =
(
V(G), E(G)

)
, where V(G) is a finite set of vertices (or nodes) and

E(G) ⊆
(V(G)

2

)
is a set of edges (or links).

An undirected graph G satisfies for all v, w ∈ V(G) that (v, w) ∈ E(G) ⇔ (w, v) ∈ E(G). We also just
write vw ∈ E(G) instead of (v, w) ∈ E(G) for undirected G.

A directed graph (or digraph) is a graph which is not undirected.

A weigthed graph G has a weight function w : V(G) → W (where W is usually Q or R) to every edge.
A graph which does not is called binary (either an edge exists or it does not).

A simple multigraph is a graph where E(G) is a multiset (there may be several edges with the same
source and target). It may also contain self-loops: there may exist v ∈ V(G) such that vv ∈ E(G).

A digraph G contains a cycle if there exists a set of edges v1v2, . . . , vn−1vn, vnv1 ∈ E(G) for an n ≥ 2.
A digraph is acyclic if it does not contain a cycle.

Given some graph G, we generally refer to the number of vertices by n and to the number of edges
by m.

We denote by NG(v) = { w | vw ∈ E(G) } the neighbourhood of v in G. We may omit the subscript if
it is clear from context. Similarly, we denote by NG(v, w) = { y | vy ∈ E(G) ∨ wy ∈ E(G) } the set
of common neighbours of v and w.

We refer to the average degree of a graph as ⟨k⟩. For a vertex v, the degree of v may be written
as degG(v), kv or |NG(v)|. When talking about in- or out-degrees, we generally add an in or out

superscript.

2

https://panikzettel.philworld.de/sn20.pdf
https://git.rwth-aachen.de/philipp.schroer/panikzettel

1.1 Adjacency Matrix

Let G = (V(G), E(G)) be a digraph. The adjacency matrix A ∈ { 0, 1 }n×n of G is given by:

Aij =

{
1, if ij ∈ E(G),

0, otherwise.

When considering weighted graphs, we let Aij = wij.

The density of an undirected graph is given by |E(G)|∣∣∣∣∣
(V(G)

2

)∣∣∣∣∣ =
2·|E(G)|

|V(G)|·(|V(G)|−1) .

We call a graph sparse if |E(G)| ≈ |V(G)|. In these cases, an adjacency matrix is an inefficient way
of storing the graph. A graph for which the number of edges is significantly larger than the number
of vertices is called dense. Most observed graphs are sparse.

An alternative representation for sparse graph is the edge list, where we simply store a list of edges
where every edge is represented by a 2-tuple containing its source and its target vertex (for weighted
edges, we may use 3-tuples, where the third stored value is the weight of the edge).

1.2 Clustering Coefficient

For undirected graphs, the clustering coefficient is a measure of how connected the neighbourhood of
a vertex is. For some v ∈ V(G) it is given by

cv =
2 · ev

degG(v) · (degG(v)− 1)
,

where ev is the number of edges between the neighbours of v. The clustering coefficient of a graph
is given by:

CG =
1

|V(G)| · ∑
v∈V(G)

cv.

An alternative to the clustering coefficient is the potential triangle count, which is given by:

PG =
number of triangles · 3

number of connected triples
.

1.3 Small World Property

A graph G satisfies the small world property if it
has, compared to a random graph G′ of the same
order, more or less the same average path length
LG and a much higher clustering coefficient.

Definition: Small World Property

Formally, G must satisfy σ =
CG
CG′
LG
LG′

> 1.

3

1.4 Components and Paths

We call the largest component in a graph the giant component, usually when 90% or more vertices
are contained in it.

A digraph is strongly connected if for every pair of vertices there exists a path leading from one to
the other and vice versa. It is weakly connected if this is satisfied for at least one direction.

Components can be identified with Depth First Search (DFS) or Breadth First Search (BFS).

Algorithm: Depth First Search

Input: A graph G, a vertex v.
Output: All nodes reachable from v.

1. Label v as discovered.
2. For all neighbours w of v:

a) If w is not labeled as discovered:
i. Recursively call DFS with G

and w.
3. Return discovered nodes.

Algorithm: Breadth First Search

Input: A graph G, a vertex v.
Output: All nodes reachable from v.

1. Label v as discovered.
2. Create queue Q and enqueue v onto Q.
3. While Q is not empty:

a) Dequeue w from Q:
b) For all neighbours x of w that are

not labeled as discovered:
i. Label x as discovered.

ii. Enqueue x onto Q.
4. Return discovered nodes.

Dijsktra’s Algorithm

Dijsktra’s algorithm is used to compute the shortest path (also called geodesic path) from one vertex to
all the others. This version here stops when a certain destination node is discovered.

Algorithm: Dijsktra’s Algorithm

Input: A graph G, an initial vertex v, a destination vertex z.
Output: A distance function d : V(G) → N which assigns every w ∈ V(G) its distance to v.

1. Create queue Q of all vertices, and set distance d(v) = 0 and d(w) = ∞ for all other
w ∈ V(G). Label all nodes as undiscovered.

2. While Q is not empty:
a) Dequeue the node w with smallest tentative distance d(w) from Q and label it as

discovered.
b) If w is the destination node z then terminate.
c) For each neighbour x of w that has not been labeled as discovered:

i. Compute the tentative distance d(x): The smallest value between the current
distance d(x) and the sum of the distance d(w) plus the weight of the edge (w, x).

The length of the longest shortest path of a graph is called the diameter of the graph.

4

1.5 Centrality Measures

There are a few different graph metrics which are referred to as centrality measures. These centrality
measures compute a score for every vertex which tells us how central it is to the network it is
located in.

Definition: Degree Centrality

For a digraph, the degree centralities of a vertex are given by:

dcin
v = ∑

w∈V(G)

Avw and dcout
v = ∑

w∈V(G)

Awv.

For undirected (weighted) graphs it is given by: dcv = ∑w∈V(G) Avw.

The above centralities can be normalised by dividing by n − 1.

However, degree centrality is a local measure and does not take into account the location of a vertex
in a network.

Definition: Closeness Centrality

The closeness centrality of a vertex v is given by:

ccv =
1
dv

,

where dv = 1
n−1 ∑w ̸=v dvw is the average distance from v to all other vertices. A high closeness

centrality implies that a vertex is on average close to all other vertices.

Closeness centrality is already more precise than degree centrality. However, in small diameter
networks it often turns out to be ineffective as the range of values is too narrow. It is also very
sensitive to variations in the network. Further, it is undefined in networks with multiple components.

Definition: Betweenness Centrality

The betweenness centrality of a vertex v is given by:

bci = ∑
v,w∈V(G)

sp(v, i, w)

sp(v, w)
,

where sp(v, w) is the number of shortest paths from v to w, while sp(v, i, w) is the number of
shortest pathes from v to w that pass through i.

Betweenness centrality, while pretty good, is limited to shortest paths, while generally information
can travel long distances. Furthermore, it has time complexity O(n3), which is pretty bad.

Eigenvector Centrality Eigenvector centrality is a measure of the influence of a node and is computed
recursively. Initially, every vertex v is assigned ecv = 1. In every step, it is then updated by assigning
each vector the sum of the centralities of the neighbours, normalised by the maximum observed
centrality.

5

PageRank PageRank works in a similar way to eigenvector centrality. Every vertex is initialised to
the value 1

n and in every turn, the value of every vertex is divided by its number of out-edges and
sent to its neighbours until the values converge.

A

1
8

B

1
8

C

1
8

D1
8 E1

8 F 1
8 G 1

8

H1
8

A

1
2

B

1
16

C

1
16

D1
16 E1

16 F 1
16 G 1

16

H1
8

Initialisation First Iteration

In this diagram: The first iteration of PageRank exemplified.

Scaled PageRank In some graphs, PageRank results in all the value being concentrated into few
vertices which act as sinks. To counteract this, after every step, scaled PageRank scales down the
value of each vertex equally by some s and redistributes the rest equally to all nodes such that the
sum becomes one again. Formally, this means that:

PR(i) = 1 − s
n

+ s · ∑
∀j:i∈NG(j)

PR(j)
degout

G (j)
.

A

1
8

B

1
8

C

1
8

D1
8 E1

8 F1
8 G 1

8

H1
8

A

3
16

B

3
32

C

3
32

D3
32 E3

32 F1
8 G 1

8

H1
8

Initialisation First Iteration

In this diagram: A network in which regular PageRank would let F and G behave as sinks and the
first iteration of scaled PageRank with s = 1

2 .

6

2 Network Models

2.1 Random Graphs

Erdős–Rényi Graphs An Erdős–Rényi graph G(n, p) takes two parameters: n, the order of the graph to
be generated, and p, the probability for an edge to exist.

Properties
Mean degree c = (n − 1) · p
Degree distribution P(degG(v) = k) = ck

k! e−c

Clustering coefficient C = c
n−1 = p

Diameter ℓ = ln n
ln c

Fraction of vertices in GCC S = 1 − e−cS

GCC critical average degree c = 1

Erdős–Rényi graphs have a giant connected component if their average degree is at least one. Their
diameter is relatively small and their clustering is low in comparison to empirical networks.

2.2 Small-World Networks

Recall the small-world property from section 1.3 where graphs with this property have small
distance but a high clustering coefficient.

To generate a small-world graph with n nodes, a number x, and probability p we follow these steps:

1. Start with a ring with n nodes and connect every node with its x
2 neighbours to each side.

Thus, every node has degree x.
2. Go through each edge and reconnect it with probability p: Choose a new node for one end of

the edge.

A second way of generating these networks is adding new random edges with probability p, rather
than changing the old ones, in the initial ring. This results in the ring structure plus a random
graph.

Properties
Mean degree c = xp

Degree distribution P(degG(v) = k) = e−xp (xp)k−x

(k−x)!

Clustering coefficient C = 3(x−2)
4(x−1) (if p = 0)

Diameter ℓ = n
2x

2.3 The Configuration Model

The configuration model is a random graph model with two parameters: G(n, k⃗), where k⃗ is a sequence
of degrees, one for each node. There are two ways to generate a graph with the configuration
model.

Approach 1 is probabilistic links: Calculate the probability that a link between nodes i and j exists:
pi,j =

kik j
2m =

kik j

∑n
l=1 kl

. Then fill the adjacency matrix with 1 or 0 correspondingly. Approach 2: We add
stubs equal to the degree in the degree sequence and repeatedly connect two stubs randomly.

The graph has a giant connected component if the condition ⟨k2⟩ − 2⟨k⟩ > 0 is fulfilled.

7

Properties
Mean degree ?
Degree distribution Specified
Clustering coefficient C = 1

n
(⟨k2⟩−⟨k⟩)2

⟨k⟩3

Diameter ℓ = O(log n)

2.4 The Barabási-Albert Model

We introduce the scale-free property which is also called the power-law. The functional relationship
between the node degree x and the frequency f is f (x) = ax−k. This results in many nodes with
low degree and few nodes with high degree. The distribution follows the principle of “the rich get
richer”.

The Barabási-Albert model generates scale-free graphs. Generation is done in two phases:

0. Start with m0 nodes and connect them arbitrarily, such that every node has at least one link.
1. Growth step: At each timestep add a new node and connect it with m(≤ m0) links that

connect to m nodes already in the network.
2. Preferential attachment: The probability Γ(k) that a link of the new node connects to node i

depends on the degree ki: Γ(ki) =
ki

∑j k j

Many real-world networks are scale-free but many are also not.

2.5 Network Robustness

We now look at the robustness of networks to node and edge failures.

Robustness of Erdős–Rényi Graphs On the right,
we approximate the share of vertices remaining
in the giant component of Erdős–Rényi graphs
when successively removing random vertices
and when always removing the vertex with the
highest degree. We observe that succesively re-
moving vertices of large degree very quickly
breaks the network, and that this type of net-
work isn’t robust against random attacks either.

of removed
vertices

% of vertices in
giant component

Robustness of Scale-Free Networks Scale-free networks on the other hand are quasi-immune to random
attacks as the only real way of breaking them up is to hit the hubs, which is unlikely as they are
comparatively few. However, they are thus much more susceptible to precise attacks on the hubs.
We can explain this using the Molloy-Reed criterion below.

Definition: Molloy-Reed Criterion

The Molloy-Reed criterion states that a graph has a giant component if ⟨k2⟩
⟨k⟩ ≥ 2.

8

3 Mesoscopic Structure

3.1 Detecting Communities

Hierarchical Clustering Hierarchical clustering is a technique used to arrange nodes of a graph in a
so-called dendrogram (see examples) such that vertices which are more likely to be in the same
community are connected earlier on. The advantage is that here we can first analyse the structure
of a graph before deciding where to actually split the graph into communities. In the following, we
present two heuristics which generate such dendrograms.

A D B C G E FA D B C G E F

A B C

D E F

G

A D B G C E FA D B G C E F

In this diagram: A graph G (middle) and two dendrograms, one obtained by the Ravasz algorithm
(left), and one obtained by the Girvan-Newman Algorithm (right).

Algorithm: Ravasz

Input: A graph G = (V(G), E(G)).
Output: A dendrogram for G.

1. Set up the similarity matrix X0 ∈ R|V(G)|×|V(G)| ∀ v, w ∈ V(G):

X0
vw =

|NG(v, w)|+ Θ(Avw)

min(kv, kw) + 1 − Θ(Avw)
,

where Θ is the Heaviside function: Θ(x) = 0 if x ≤ 0, Θ(x) = 1 otherwise.

2. Assign every node to a community of its own.
3. While there is more than one community:

a) For all pairs of communities A and B, compute the average linkage similarity given by:

als(A, B) =
1

|A| · |B| ∑
a∈A

∑
b∈B

X0
ab.

(This is just the average pairwise similarity between vertices in A and B.)

b) Merge the pair of clusters where als(A, B) is maximal.
4. Generate the dendrogram in the order in which the communities were merged, i.e. if

two singleton communities are merged, they are connected at the lowest step in the
dendrogram.

9

Algorithm: Girvan-Newman

Input: A graph G = (V(G), E(G)).
Output: A dendrogram for G.

1. While E(G) ̸= ∅ :
a) For every edge, compute vw ∈ E(G) the link betweenness Lvw (analogous to node

betweenness centrality, but for links).
b) Remove the edge with max Lvw. If there are multiple, choose one randomly.

2. Generate the dendrogram in the reverse order in which the edges were removed, i.e. if an
edge is removed last, the corresponding vertices are connected at the lowest step of the
dendrogram.

The Ravasz algorithm is called an agglomerative algorithm as we successively merge vertices into
larger and larger communities, while the Girvan-Newman algorithm is a divisive algorithm, where
we break up the network successively and observe which parts stay connected the longest. By
varying the heuristics we use we can obviously obtain different results, for example by instead of
computing the average linkage similarity in the Ravasz Algorithm, choosing the communities with
the largest overall linkage.

3.2 Cutting a Dendrogram

There are multiple heuristics for cutting a dendrogram. For example, we can for try to split such that
the coverage, i.e. the ratio between in-community edges versus total number of edges is maximised.
Another more complex method is to maximise the modularity of a partition.

3.3 Modularity

The modularity of a partition is given by

M = ∑
c

(
|Ec(G)|
|E(G)| −

(
kc

2 · |E(G)|

)2
)

,

where kc is the sum of the degrees within a community c and Ec(G) are the edges.

Algorithm: Greedy Modularity Maximisation

Input: A graph G and a corresponding dendrogram.
Output: A partition of V(G).

1. Consider the partition P where every vertex is an individual community.
2. Compute M, the modularity of the current partition.
3. While |P| > 1:

a) Store M.
b) For every one merge of the dendrogram, compute the change ∆M of the modularity.
c) Follow the merge where ∆M is the largest.
d) Compute M, the modularity of the current partition.

4. Return the visited partition of the largest modularity.

10

The modularity of a partition can also be computed in another way:

M = ∑
c

(
ecc − k2

c
)

,

where for every community c, ecc is the ratio of in-community edges to all edges, while kc is the
ratio of the sum of vertex degrees in c to the overall sum of vertex degrees (2m).

Label Propagation Label propagation is a very fast and local algorithm to detect communities. First,
every vertex is initialised to have a unique label. Then, in every step (and generally in a random
order), every vertex is assigned the label of which it has the most neighbours. Ties are resolved
by a random choice. This algorithm can find any number of communities of any size and is very
fast. However, its results are not unique and it can get stuck in oscillations, for example in bipartite
subgraphs.

3.4 Judging the Quality of Detected Communities

Rand Index Assume you are given two partitions X and Y of a same graph, where X is the actual
partition and Y is one obtained by some algorithm, the Rand index R is a measure of how well the
computed partition fares compared to the actual one. It is given by

R =
n00 + n11

n00 + n01 + n10 + n11
.

n00: number of pairs vertices in different communities in both X and Y.
n01: number of pairs vertices in different communities in X but not Y.
n10: number of pairs vertices in same communities in X but not Y.
n11: number of pairs vertices in same communities in both X and Y.

Homophily Given a graph and two types of labels with occurring probabilities p and 1 − p respec-
tively, the real probability for an edge to have both its endpoints of the same label is p2 + (1 − p)2,
while the probability for an inter-label edge is 2p(1 − p). We say that a network tends to show
homophily if the share of inter-label edges is significantly less than 2p(1 − p). On the other hand, if
it is significantly larger, we talk about heterophily.

In general, modularity is a good indicator for homophily.

Two influencing factors for homophily in social networks are influence and selection: people tend to
become more like the people around them and people tend to connect more to people which are
already like themselves.

Degree Assortativity The degree assortativity of a graph is given by:

r =
S1Se − S2

2

S1S3 − S2
2

,

where Se = 2 · ∑vw∈E(G) kvkw and for p ∈ { 1, 2, 3 }, Sp = ∑v∈V(G) kp
v .

A network with high degree assortativity (r > 0) tends to have a structure where hubs connect to
hubs and low degree vertices tend to connect to low degree vertices. We call this a core-periphery
structure. In a network with high degree disassortativity (r < 0), hubs tend to connect to small
degree vertices and vice-versa. Erdős–Rényi and Barabási-Albert graphs in general have r ≈ 0.

11

Degree Correlation Function The degree correlation function knn(k) returns the average degree of an
arbitrary node we reach by selecting a random node of degree k and following a random link, or:

knn(k) = ∑
k′

k′ · P(k′|k).

Friendship Paradox The friendship paradox states that most vertices have less neighbours on average
than their neighbours. Given a random graph with average degree ⟨k⟩ and selecting a random
vertex, we can show that his neighbours have ⟨k2⟩

⟨k⟩ neighbours on average.

4 Dynamics and Spreading

Networks can be used to model spreading, for example how diseases spread in a population. The
population is modelled by a graph of people as nodes and interactions as vertices.

4.1 Infection Models

The characteristic time of a given model is the number of steps needed to infect about 1
e ≈ 36% of

the nodes. The basic reproductive number is the average number of individuals an infected node will
infect before recovering in a completely susceptible population.

SIS Model

S I

β

µ

Characteristic Time τ = 1
µ·(R0−1)

BRN R0 = β⟨k⟩
µ

Spreading Rate λ = β
µ

Epidemic Threshold λc =
⟨k⟩
⟨k2⟩

If R0 > 1, then every node infects at least one
other before becoming susceptible again. The
epidemic is endemic. In terms of the spreading
rate, the epidemic spreads if λ > λc.

If R0 < 1, then every nodes infects less than one
other before becoming susceptible again. The
epidemic dies out. In terms of the spreading
rate, the epidemic dies out if λ < λc.

Observe that for power law networks, λc di-
verges when n → ∞, which implies that in
these networks, even very slow viruses can
spread successfully there.

In this model, either the infection dies out, or af-
ter enough time some fraction of the population
(given by 1 − µ

β⟨k⟩) is infected.

SI Model

S I

β

Characteristic Time τ = 1
β⟨k⟩

In this model, all nodes become infected given
enough time.

SIR Model

S I R

β γ

In this model, all nodes recover given enough
time.

SIRS Model

S I R

β γ

δ

Analytically not solvable.

12

Legend
S Set of susceptible nodes
I Set of infected nodes
R Set of recovered/removed nodes

β ∈ [0, 1] In each step, likelihood of an infected node infecting one of its neighbours.
µ ∈ [0, 1] In each step, likelihood of an infected node becoming susceptible again.
γ ∈ [0, 1] In each step, likelihood of an infected node recovering.
δ ∈ [0, 1] In each step, likelihood of a recovered node to become susceptible again.

Vaccination Strategies An interesting questions is, “how can we stop the spread of infections in real
networks effectively and at a limited cost?” Three approaches have been discussed in the lecture:

• Random vaccination: Ineffective, as power-law networks are very robust against random node
attacks.

• Hub vaccination: Theoretically ideal as it would break the network. Impractical however, as
this requires knowledge of hubs.

• Random neighbour vaccination: Sample the population and vaccinate, for each node, a
random neighbour (see Friendship Paradox). Balances the two previous approaches.

4.2 Cascading Behaviour

In this part, we discuss the emergence of group behaviour based on individual thresholds. For a
population given by P = { 1, . . . , n }, let θ(i) = x, i ∈ P be the behaviour threshold for individual i,
meaning i joins a certain group behaviour only if at least x others are already participating.

Let f (x) be the corresponding frequency distribution while F(x) corresponds to the cumulative
distribution. Denoting discrete time steps as t ∈ 1, 2, . . . , let r(t) denote the number of participants
at time t. We can then calculate r(t + 1) := F(r(t)): the number of people whose threshold is below
the number of current participants will join in the next time step.

An equilibrium is reached once r(t) = r(t + 1): when no new people join the behaviour, either
because they have a higher threshold or because everyone is participating.

If we now assume that f is a normal distribution (pertinent, as in reality this is often approximately
the case), we often observe that there is a tipping point tied to the standard deviation of f . Below it,
only very few participate, while above it, almost everyone participates in the behaviour.

Network Behaviour Assume a given network G, in which every node can choose between two
alternatives, A and B such that, for every edge vw ∈ E(G), if v and w both chose A or B, they get
both payoffs a > 0 or b > 0 respectively, whereas if they chose different alternatives, they both get
payoff 0. Initially, everybody uses alternative B, while a select few choose A for some reason. Then
in a given time step every v ∈ V(G) would adopt A if

p · |NG(v)| · a ≥ (1 − p) · |NG(v)| · b,

where p is the share of neighbours having adopted A (simple payoff maximisation). The formula
can be shortened to p ≥ b

a+b .

We call it a complete cascade if after a certain number of time steps, all nodes switch from B to A. A
complete cascade can be stopped by a B cluster of density at least 1 − p: a set of nodes such that

13

every node in it has selected B and has at least a fraction of p neighbours who have also selected B.
It is easy to prove that only such clusters can stop a complete cascade.

4.3 Weak Ties

In this section, we discuss a discovery by Mark Granovetter about job acquisition. He observed
that although many people got their jobs through social contacts, most didn’t come through close
friends (strong ties), but rather through acquaintances (weak ties).

Triadic Closure Triadic closure is the term used to describe the phenomenon in social networks in
which nodes with a shared neighbour have a stronger than average likelihood of in turn developing
a shared link, which in turn provides both with social opportunities.

Local Bridge A local bridge is an edge in a network such that its endpoints have no common
neighbours.

Strong Triadic Closure Property The STCP (which is actually an assumption) states that if a vertex
has a strong tie to two other vertices, then these two share a tie, either weak or strong.

It implies that every local bridge must have one
weak tie. A proof by contradiction is drawn on
the right. Two strong ties would imply a weak tie
between the other vertices, thus the local bridge
isn’t a bridge anymore.

Further, the STCP implies that weak ties are
those that connect more distant parts of a net-
work and that removing them is more likely to
destroy a network than removing strong ties.

A B

C

strong

strong
weak

In this diagram: A local bridge that isn’t one.

This has been observed across a variety of networks, and is among others a nice property to reduce
the spread of infections as weak ties are less likely to transmit them.

5 Link Prediction

In this section we discuss how we can, given a network, predict which new links might form in the
future and which tools we have to predict these.

5.1 Neighbourhood Approaches

A simple method is to assign pairs of vertices scores based on their neighbourhoods. These scores
are convenient as they are easy to understand and easy to implement as they only require local
information. However, they are less accurate than other, more complex techniques.

14

Definition: Common Neighbours

The common neighbour score returns, for two
v, w ∈ V(G), the number of neighbours
they have in common:

SCN(v, w) = |NG(v) ∩ NG(w)|.

Definition: Jaccard

The Jaccard score for two v, w ∈ V(G) is
given by:

SJ(v, w) =
|NG(v) ∩ NG(w)|
|NG(v) ∪ NG(w)| .

Informally, we measure how many of their neigh-
bours they have in common compared to their over-
all number of neighbours.

Definition: Adamic-Adar

The Adamic-Adar score values shared neigh-
bours of small degree more. Formally:

SAA(v, w) = ∑
u∈NG(v)∩NG(w)

1
log |NG(u)|

.

For example, two people who regularly visit the
same small bar are much more likely to meet than
two people who regularly attend a same large con-
cert venue.

Definition: Preferential Attachment

The preferential attachment score assumes
that two hubs are likely to become con-
nected at some point:

SPA(v, w) = |NG(v)||NG(w)|.

5.2 Path Approaches

A somewhat more sophisticated approach would be to use path information to predict new links.
However, even these are not very good and computationally very expensive.

Definition: Distance

The distance score for two vertices v, w ∈ V(G) is the negation of the distance of the two:

SD(v, w) = −d(v, w).

Definition: Katz Similarity

The Katz similarity score sums over all paths of length ℓ, where β ∈ [0, 1]:

SKS(v, w) =
∞

∑
ℓ=1

βℓ
∣∣∣paths(ℓ)vw

∣∣∣ .

By tuning β, it is possible to adjust how much value to put on longer paths.

More complex machine learning classifiers (logistic regression, SVMs, or NNs) yield much better
results. They are however much less transparent in their results. Further, use of meta-data and
community structures can yield improved results.

15

6 Directed and Signed Networks

6.1 Directed Networks

Triadic Census We can do a triadic census that evaluates every vertex triple in a graph. The result is
a T ∈ N1×16 vector, counting how often each of the 16 triads below occured.

In this table: The 16 triad motifs. All in all, there exist 64 realisations of these triads when
distinguishing the vertices.

Flow Hierarchy Flow hierarchy is a metric which measures how hierarchical a graph is, and is more
nuanced than the binary hierarchical/not hierarchical. Formally, the flow hierarchy is given by the
size of the fraction of edges which are not part of a cycle:

h(G) =

∑e∈E(G)

{
1, if e is not in a cycle.

0, otherwise.

|E(G)| .

hierarchical graph non-hierarchical graph
h(G) = 1 h(G) = 5

8

6.2 Signed Networks

There are four configurations of signed triangles to model three-way relations, some of them more
stable than the others. A network is called structurally balanced if all its triangles are balanced (they
are either of the first or the third type).

16

A

B C

+ +

+

A

B C

+ +

−

A

B C

+ −

−

A

B C

− −

−
balanced stressful balanced stressful

All three
get along.

B and C try to get
A to side with them

against the other.
A and B are friends

against a common enemy.
The enemy of my enemy

is my friend...

7 Association Networks

Definition A graph is an association network if each vertex v ∈ V(G) has an attribute vector xv ∈ Xn

with xv = (xv,1, . . . , xv,n).

7.1 Measuring Node Similarity

Pearson Correlation The Pearson correlation is useful for measuring the similarity for vertices v, w
with continuous attributes and is given by:

ρvw =
Cov(xv, xw)√

Var(xv) · Var(xw)
=

∑v,w(Avw − kvkw/2m)xvxw

∑v,w(kvδvw − kvkw/2m)xvxw
.

8 Filtering

Minimum Spanning Tree A very simple technique for filtering a network is to compute a minimum
spanning tree. For example, we can use Kruskal’s algorithm1 in that we sort all edges by decreasing
similarity and then add them successively back to the network while making sure that the result is
a tree.

Though MSTs are very easy to compute and somewhat useful, they have the disadvantage of having
no cycles or clustering.

Disparity Filter The disparity filter approach aims
to remove a subset of insignificant edges by
computing, for every vertex, the fractional edge
weight of all outgoing edges:

pvw =
wvw

∑kv
d=1 wvd

.

A B

C

11

3
7

pAB = 11
14 , pBA = 11

18 .

1See e.g. our DSAL Panikzettel (German) for Kruskal’s algorithm.

17

https://panikzettel.philworld.de/dsal.pdf

Algorithm: Disparity Filter

Input: A graph G = (V(G), E(G)).
Output: A filtered graph G′ = (V(G′), E(G′)).

1. Select a threshold α ∈ [0, 1].
2. For every vertex, compute the relative significance score of every outgoing edge, i.e. the

weight of the outgoing edge versus all of the vertex’ outgoing edge’s weights.
3. Keep all edges which are significant for either of its endpoints, i.e. whose significance is

larger than α.
4. Return the resulting subgraph.

18

	Graphs
	Adjacency Matrix
	Clustering Coefficient
	Small World Property
	Components and Paths
	Centrality Measures

	Network Models
	Random Graphs
	Small-World Networks
	The Configuration Model
	The Barabási-Albert Model
	Network Robustness

	Mesoscopic Structure
	Detecting Communities
	Cutting a Dendrogram
	Modularity
	Judging the Quality of Detected Communities

	Dynamics and Spreading
	Infection Models
	Cascading Behaviour
	Weak Ties

	Link Prediction
	Neighbourhood Approaches
	Path Approaches

	Directed and Signed Networks
	Directed Networks
	Signed Networks

	Association Networks
	Measuring Node Similarity

	Filtering

