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This Panikzettel is about the lecture Social Networks by Prof. Dr. Markus Strohmaier held in the
summer semester 2020.

We have two Panikzettel on Social Networks! This one is from the summer semester of 2020. There
is also one written mainly in the summer of 2019: Social Networks 2019 Panikzettel.

This Panikzettel is Open Source. We appreciate comments and suggestions at
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1 Introduction and Concepts

1.1 Graph Theory

A graph consists of components called nodes or vertices. In general, the set of node or vertices is
called N or V. Interactions between two components are indicated with links or edges. The set of
links or edges is generally called L or E. The complete system is called network or graph and is
defined as G = (N, L).

The links of an undirected graph are symmetrical i.e. they have no direction. The links of a directed
graph can be asymmetrical i.e. they have an explicit direction.

Definition: Self-Loop

A link whose source and
destination are the same
node.

Definition: Multigraph

A graph that have loops
or multiple edges be-
tween two nodes.

Definition: Simple Graph

A simple graph contains
no loops and no multiple
links.

In binary networks links just have two states: present or not. In weighted networks each links is labeled
with a value indicating the connection’s strength. A strength of 0 indicates that there is no link.

1.2 Measuring Network Structure

Definition: Adjacency Matrix

In a binary network (N, L) an adjacency matrix An×n with n = |N| can be used to describe the
links L ⊆ N × N:

Aij =

{
1 if there is a link from i to j,

0 otherwise.

If the network is a weighted network, the elements of the matrix represent the weights wij:

Aij = wij.

The maximum number of links in a graph with n = |N| nodes is given with:

Lmax =

(
n
2

)
=

n(n− 1)
2

A graph with |L| = Lmax is called complete graph.
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Definition: Density

Given a graph G = (N, L). The relation-
ship between the number of links and the
possible number of links is called density:

density(G) =
|L|

Lmax
=

|L|(
n
2

) =
2|L|

n(n− 1)

where n = |N|.
A network is called sparse if the number of
nodes is in the same order as the number
of links (|N| ≈ |L|). Networks with |L| ≫
|N| are said to be dense.

Definition: Degree, Average Degree

Undirected graphs: kn defines the number
of links node n ∈ N has.

Directed graphs: kout
n defines the number

of outgoing and kin
n defines the number of

incoming links of node n ∈ N.

⟨k⟩ defines the average degree:

⟨k⟩ :=
1
|N| ∑

i∈N
ki =

2|L|
|N|

1.3 Distance

Some definitions about distances in a graph G = (N, L).

Definition: Walk

A walk is a sequence of nodes in which
each node is adjacent to the next one.

Definition: Path

A path is a walk without node repeats and
different ends (no loop).

Definition: Distance

The distance (shortest path, geodesic path)
between two nodes is defined as the num-
ber of edges along the shortest path con-
necting them.

Definition: Diameter

The diameter dmax defines the maximum
shortest path (or maximum distance) be-
tween any pair of nodes in a given graph.

1.4 Clustering Coefficient

Let a graph G = (N, L).

Definition: Clustering Coefficient

The clustering coefficient of node n ∈ N is

Cn =
2en

kn(kn − 1)

where kn is the degree of node n and en is the number of links between the neighbors of
node n.

4



1.5 Small-World Problem

A given network shows the small-world property if the number of vertices reachable from a central
vertex grows exponentially with the distance. So, a network shows the small-world effect if the
average distance between two vertices in the network davg scales logarithmically or slower with the
networks size:

davg ∼ log|N|

1.6 Components

Given a graph G = (N, L).

Definition: Connected Component

A connected componenta is a subset of nodes C ⊆ N where there is a path between each pair of
node x, y ∈ C.

• A graph G = (N, L) is called connected graph if there is one connected component with
N = C.

• The largest component is called giant component.
• Components that are not the giant component are called isolates.
• A link l ∈ L is called bridge if the number of connected components increases by erasing

it.
aIf the same property holds in a directed graph it is called strongly connected directed graph.

1.7 Centrality Measures

Centrality measurements try to identify nodes that are more important than others. It depends on
the network’s context which measurement the highest amount of information gives.

1.7.1 Degree Centrality

The degree centrality just measures the number of links each node has. This centrality measurement
is easy to calculate but does not differentiate between links of different importance. Thus, it is a
local measure, i.e. it does not depend on the rest of the network.

1.7.2 Closeness Centrality

The closeness centrality measures the mean distance to all other nodes. The centrality measure states
that nodes with a smaller average distance are more important than others. Given the distance dij
between two nodes i and j, the closeness centrality Ci is calculated using the mean distance di to all
other nodes:

Ci =
1
di

where di =
1

|N| − 1 ∑
j∈N\{i}

dij.

This centrality measurement is weak in small-diameter networks as the range of variation is too
narrow. Additionally, it is not even defined for networks with two or more isolated components.
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1.7.3 Betweenness Centrality

The betweenness centrality of a node v measures how often node v is visited when going along the
shortest path of each pair of nodes. So, the betweenness centrality of a node v is given with

g(v) = ∑
v,s,t∈N,
s ̸=v ̸=t

σst(v)
σst

where σst is the total number of shortest paths between s and t and σst(v) is the total number of
shortest path between s and t that pass through v.

Normalization:

g(v) =
g(v)

0.5 · (|N| − 1) · (|N| − 2)

1.7.4 Eigenvector Centrality

The eigenvector centrality introduces the idea that nodes are more important if they have connections
to nodes that are themselves important. Step t of the eigenvector centrality is calculated with

x(t) = Atx(0)

where A ∈ {0, 1}|N|×|N| is the adjacency matrix and x(t) ∈ R|N| is the vector of centrality values.

x(t) = At ∑
i

civi = ∑
i

cikt
ivi = kt

1 ∑
i

ci

[
ki

k1

]t

vi

ki eigenvalues of A, k1 largest eigenvalue.

1.8 Importance of Edges

Generally, ties (links or edges) are classified in two categories. Strong ties represent friendships and
weak ties represent the connection between acquaintances. Weak ties connect different parts of a
network. Thus, weak ties are bridges.

A node A fulfills the strong triadic closure property if A has strong ties to some nodes B and C,
then B and C share a strong or weak tie.

Definition: Local Bridge

An edge is called local bridge if its node have no friends in common.

Formally: An edge e = {i, j} is called bridge if the distance between its nodes i and j increases
to a value greater than 2 when deleting e.

2 Models of Networks

Models of networks allow us to generate and grow networks according to the given rules and
compare different instances with each other.
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2.1 Erdős-Rényi Model

A Erdős-Rényi model is an undirected network model which is given with G(n, p) where n ∈N is
the number of nodes and p ∈ [0, 1] is the probability that an edge exists.

Algorithm: Generation of Erdős-Rényi Model

1. Start with n isolated nodes.
2. For each pair of nodes generate a random number r between 0 and 1. If r < p connect the

nodes with an edge.

To generate a network of the Erdős-Rényi model with n nodes, n·(n−1)
2 = Lmax random numbers

need to be generated.

The probability of having m ∈N links in an Erdős-Rényi model is given with:

P(m) =

( (
n
2

)
m

)
︸ ︷︷ ︸

Number of ways
you can place

m links

· pm︸︷︷︸
Probability of
m successful

links

· (1− p)
(

n
2

)
−m︸ ︷︷ ︸

Probability that
remaining links

are not successful

As P(m) is a binomial distribution its mean number of edges can be derived as

⟨m⟩ =

(
n
2

)

∑
m=0

m · P(m)

=

(
n
2

)
p

The average degree of G(n, p) is given with c = (n− 1)p.

2.1.1 Poisson Distribution

The degree distribution of an Erdős-Rényi model forms a Poisson probability distribution P(k)
given with

P(k) ≃ ck

k!
e−c

where k ∈ N0 is the degree and c ∈ R is the average degree. In Figure 1 three example Poisson
distributions are shown.

The global clustering coefficient C of an Erdős-Rényi model G(n, p) is given with probability p.
Consequently, in networks with a small p there is very little clustering. These networks behave
tree-like locally.

2.1.2 Phase Transition

The phase transition describes the relation between the mean degree c of an Erdős-Rényi network
G(n, p) and the giant component. The mean degree is changed by letting p run from 0 to 1.

Let u ∈ [0, 1] be the fraction of nodes not contained in the giant component. Then it is:

u = e−c(1−u)
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Figure 1: Example Poisson Distributions with mean degree c = 1, 3, 8

c < 1 subcritical regime
The network contains only small tree-like components. The giant
component scales with log(n).

c = 1 critical point
The giant component scales with n

2
3 .

c > 1 supercritical regime
The giant component scales with n. The second largest component
scales with log(n).

c > log(n) connected regime
There exists only a single giant component.

Table 1: The four phases of the Erdős-Rényi model.

2.2 Watts-Strogatz Model (Small-World Model)

Reminder: The small-world phenomenon combines short paths with high clustering.

2.2.1 Circle Model

In the circle model all vertices are arranged in the circle and connected to its x nearest neighbors.
Thus, the clustering coefficient C can be varied depending on x:

C =
3(x− 2)
4(x− 1)

For the original small-world model we start with a regular circle model. For all edges we exchange
one end for another randomly chosen node with the probability p. The added randomness may
create bridges that can decrease average distances drastically.

In a second version of the small-world model edges are only added randomly. Thus, no edges are
removed.

In the second version we add for each non-shortcut edge (edges that were present in the original
circle model) a shortcut edge with probability p at a random location. So, we have 1

2 nxp shortcuts
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Figure 2: Example Circle model with 12 nodes and x = 2

on average with nxp ends of shortcuts. So, the degree distribution is Poisson distributed

ps = e−xp (xp)s

s!

with mean xp and s number of shortcuts added to a vertex. The total degree k of a vertex is given
with k = s + x. So s = k− x can be replace in the distribution.

2.3 Configuration Model

The basic idea of configuration models is creating a network with a given degree distribution. A
Configuration Model is a random graph G defined by G(n, k⃗) where n is the number of nodes and
k⃗ is a n-dimensional vector that gives a degree ki for each node i in the graph.

The first approach of generating configuration models is calculating the probability that an edge
between two nodes exists.

Definition: Probabilistic Links

Let G(N, E) be a graph with n = |N| nodes and m = |E| edges. Given two nodes i ∈ N and
j ∈ N with degrees ki and k j set the probability that an edge {i, j} exists to

pij =
kik j

2m
=

kik j

∑n
l=1 kl

For larger graph the deviation of the desired degrees ki are small. But the calculation for this
approach are expensive: O(n2).

The second approach adds ki stub edges to each node i, where ki is the degree of node i. Next, pick
two stubs at random and join them until no more stubs remain.

Figure 3: Example nodes with stubs

The calculations for this approach cost O(m), where m is the number of edges in the resulting
graph and 2m the number of stubs.
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In the previously presented approaches for generating a configuration model it is not guaranteed
that there are no self-loops and multiedges. But the probability of a self-loop or multiedge

pself/multi =
1
2

[
⟨k2⟩ − ⟨k⟩
⟨k⟩

]2

depending on the average degree ⟨k⟩ is low for a larger number of nodes. If a self-loop/multiegde
was generated, it is simply dropped/combined.

The clustering coefficient of the Configuration Model graph is given with

C =
1
n
[⟨k2⟩ − ⟨k⟩]2
⟨k⟩3

2.4 Barabasi-Albert Model

The Barabasi-Albert model belongs to the class of generative network models. These types of
models explore hypothesized generative mechanisms to see what graph structures they produce. If
these structures are similar to real networks, it suggests that the hypothesized mechanisms may
also be at work in these networks.

2.4.1 Power-Law Distribution

The power-law distribution is a degree distribution that often occurs in empirical networks. The
statement ”small is common” is represented by this distribution. A power-law distribution is
described by the function

f (k) = ak−γ

where k is the degree, f (k) is the occurrence of degree k and a, γ ∈ R+ are variables. Figure 4 shows
a set of example power-law distributions.

The following algorithm describes how to generate a scale-free network (Barabasi-Albert model)
with m0 + t nodes.

Algorithm: Generating Scale-Free Networks

1. Start with a graph G = (V, E) where m0 = |V| and a given set of edges E.
2. Define a number m ∈N that will be the degree for each additional node.
3. Calculate for each node i ∈ V the probability π(ki) that a new node connects to i:

π(ki) =
ki

∑j∈V k j

where ki is the degree of node i.
4. Add a new node to the graph and add m edges from the new node to other nodes

corresponding to the calculated probability.
5. Repeat step 3 and 4 until t nodes were added to the initial graph.

In the Barabasi-Albert model, nodes with higher degree are more likely to get new links. Therefore,
nodes with a high degree will get an even higher degree and nodes with a low degree will stick at
their low degree. This behavior causes a power-law degree distribution.
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Figure 4: Example Power-Law Distributions

2.5 Comparison

In this section the presented network models are compared against each other and against the
empirical network. See Table 2 and Table 3 for the comparison.

Network Property Erdős-Rényi Configuration Barabasi-Albert
degree distribution Poisson(⟨k⟩) specified Power Law with γ = 3

diameter O(log n) O(log n)
clustering coefficient O( 1

n ) O( 1
n )

(ln |N|)2

|N|
reciprocity O( 1

n ) O( 1
n )

giant component ⟨k⟩ > 1 ⟨k2⟩ − 2⟨k⟩ > 0
average distance log |N|

log log |N|

Table 2: Comparison between network models

Degree Distribution Clustering Diameter
Empirical Networks Heavy tailed, heterogeneous high low

Erdős-Rényi Poisson (homogeneous) low low
Watts-Strogatz Nearly regular high low
Configuration Specified low low

Table 3: Comparison of empirical networks and network models

2.6 Robustness

Robustness measure the network’s reliability of certain aspects when there are nodes (node attacks)
or edges (edge attacks) deleted. E.g. when (after how many removals) does the giant component
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split up into isolated components? Additionally, how does the selection of the nodes or edges
influence reliability of a network?

Definition: Molloy-Reed Criterion

The Molloy-Reed criterion states that for any degree distribution a giant component exists if

⟨k2⟩
⟨k⟩ ≥ 2

where ⟨k⟩ is the average degree and ⟨k2⟩ is the average of the squared degrees.

Thereby, the critical threshold where the network breaks apart is given with

fc = 1− 1
⟨k2⟩
⟨k⟩ − 1

.

Real networks are robust to failures or random attacks, but are vulnerable to targeted attacks.

3 Mesoscopic Structures

This section deals with structures at mesoscopic scale (which is somewhere between microscopic
and macroscopic scale).

3.1 Communities

In a network a group of nodes is called community if they are more likely to connect to each other
than to nodes of other communities. Furthermore, communities are described by the following
three hypotheses:

H1 Fundamental Hypothesis
A network’s community structure is uniquely encoded in its wiring diagram.

H2 Connectedness Hypothesis
A community corresponds to a connected subgraph.

H3 Density Hypthesis
Communities are locally dense subgraphs.

There are different ways of defining communities. The first approach would be defining communi-
ties by cliques. The problem with this approach is that small cliques are frequent and large cliques
are rare. The second approach splits up the degree of each node i into kint

i (internal degree), number
of connections to the same community and kext

i (external degree), number of connections to other
communities.

• A community C is a strong community if for each node i in C

kint
i > kext

i .

• A community C is a weak community if its total internal degree exceeds its total external degree:

∑
i∈C

kint
i > ∑

i∈C
kext

i .
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3.1.1 Hierarchical Clustering

Exact community detection by considering all possibilities is computationally infeasible for larger
networks. Therefore, we use algorithms that predict the communities using heuristics.

Algorithm: Ravasz - Agglomerative hierarchical clustering

Given an undirected network G = (V, E).

1. Define the similarity matrix S ∈ R
|V|×|V|
≥0 that gives the similarity between each node

i, j ∈ V with entries:

sij =
J(i, j) + Θ(Aij)

min(ki, k j)

where J(i, j) gives the number of common neighbors of node i and j, Θ(x) =

{
0 if x ≤ 0

1 otherwise
is the heaviside step function, A is the adjacency matrix of graph G and ki is the degree of
node i.

2. Create a community for each node itself.
3. Merge communities with highest average similarity.
4. Repeat step 1 for the new communities and merge them again (step 2 & 3) until all nodes

form a single community.
5. Calculating a dendrogram visualizes the order in which the nodes are assigned to specific

communities. To identify the communities we must cut the dendrogram. Hierarchical
clustering does not tell us where that cut should be.

The time complexity of the algorithm is in O(|V|2).

The Girvan-Newman algorithm is a divisive hierarchical clustering algorithm. It starts deleting
edges that connect different communities until all edges are deleted. For choosing these edges
the betweenness centrality can be used. Thereby, it is possible to cut the network into different
communities. The time complexity of this algorithm for a graph G = (V, E) is in O(|E|2 · |V|) (or
for sparse networks in O(|V|3)).

3.1.2 Modularity

Modularity is an approach of rating a given partition that is based on the assumption that there are
no community structures in randomly wired networks.

Definition: Modularity

Given a graph G = (N, L) and community subsets C1, . . . , Cn ⊆ N such that
⋃n

i=1 Ci = N and⋂n
i=1 Ci = ∅. The modularity M of the given partition is given with

M =
n

∑
i=1

[
|Li|
|L| −

(
ki

2|L|

)2
]

where |Li| is the number of links of the subgraph of Ci, |L| is the number of links in the
original graph and ki is the summed degree of all nodes in Ci.
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Higher modularity values indicate better partitions. A modularity value of 0 indicates that there is
a single community. Negative modularity values are also possible.

Algorithm: Greedy Modularity Maximization

1. Assign each node to a community of its own.
2. Inspect each pair of communities connected by at least one link and compute the modularity

variation ∆M obtained if we merge these two communities.
3. Identify the community pairs for which ∆M is the largest and merge them. Note that

modularity of a particular partition is always calculated from the full topology of the
network.

4. Repeat step 2 until all nodes are merged into a single community.
5. Record for each step and select the partition for which the modularity is maximal.

The problem with modularity is if there are two communities A and B with total degree kA and
kB the resolution limit of modularity is given with kA ∼ kB = k ≤

√
2L. Modularity cannot detect

communities smaller than this size.

A faster way to compute communities using modularity is the Louvain algorithm that detects
communities in two steps that are iteratively repeated.

Algorithm: Louvain Method

Given a (weighted) network G = (N, L).

1. Assign each node to a different community. For each node i ∈ N calculate the gain in
modularity ∆Mi,C if we place node i in one of its neighboring communities C. We move
node i to the community with the largest positive gain. This process is applied to all nodes
until no improvement is achieved. The gain in modularity ∆Mi,C is given with

∆Mi,C =

[
∑in +2ki,in

2W
−
(

∑tot +ki

2W

)2
]
−
[

∑in
2W
−
(

∑tot
2W

)2

−
(

ki

2W

)2
]

where ∑in is the sum of (weighted) links inside of C, ∑tot is the sum of all (weighted) links
of nodes in C, ki is the sum of (weighted) links of node i, ki,in is the sum of (weighted) links
from i to nodes in C and W is the sum of all (weighted) links in the network.

2. Construct a new network whose nodes are communities identified in step 1. The weight
of a link between two nodes is the sum of (weighted) links between the corresponding
communities. Links within a community lead to weighted self-loops.

Repeat both steps until no more changes are applied.

3.1.3 Infomap

The idea of infomaps is to have a walker that walks randomly through the network. Since edges
within a community are more probable than edges between communities the walker should get
stuck within communities (at least for a while). Thereby, it is possible to draw conclusions of the
community structure. To make this method even more efficient it is possible to make use of Huffman
codes.
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3.1.4 Label Propagation

Label propagation is a very fast and local method to detect communities within a network.

Algorithm: Label Propagation

1. Initialize each node to have its own label.
2. For each node (randomly ordered) adopt the most popular label among its neighbors. Ties

are settled randomly.
3. Repeat step 2 until no more changes are applied.

3.1.5 Rand Index

The Rand Index R is able to measure the performance of a community detection if the actual
(ground truth) communities are known.

Definition: Rand Index

R =
n00 + n11

n00 + n11 + n10 + n01

n11 Number of pairs of elements in the same community under both D and T
n00 Number of pairs of elements not in the same community under both D and T
n01 Number of pairs of elements not in the same community under D but in the same

community under T
n10 Number of pairs of elements in the same community under D but not in the same

community under T

where T is the ground truth and D is the detected solution.

3.2 Homophily and Assortativity

A network is homophilic (or heterophilic) if its nodes are more (less) likely to connect to a node with a
similar value of a given property. The homophily of two nodes i and j with a given property xi and
xj can be measured using the covariance.

Definition: Covariance

The covariance will be high if xi and xj at either end of an edge tend to be both high or both
low. Given a graph G = (N, L), the covariance is given with:

cov(xi, xj) =
1

2|L| ∑
i,j∈N

(
Aij −

kik j

2|L|

)
xixj

After normalization of the covariance we obtain the Pearson correlation.
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Definition: Pearson Correlation

The Pearson correlation considers scalar observations over all edges of a network G = (N, L):

r =
∑ij(Aij −

kik j
2|L| )xixj

∑ij(kiδij −
kik j
2|L| )xixj

3.2.1 Degree Assortativity

When considering homophily with respect to the scalar degree value it is called degree assortativity.
So, the Pearson correlation for degree assortativity is given with

r =
∑ij(Aij −

kik j
2|L| )kik j

∑ij(kiδij −
kik j
2|L| )kik j

where xi = ki.

This can be simplified by iterating over the edges instead of iterating over the nodes twice. Given
an undirected graph G = (N, L) the Pearson correlation can be calculated using

r =
S1Se − S2

2

S1S3 − S2
2

where

Se = 2 ∑
{i,j}∈L

kik j S1 = ∑
i∈N

ki S2 = ∑
i∈N

k2
i S3 = ∑

i∈N
k3

i .

Assortativity has a direct impact on the network’s structure. In high assortativity networks hubs
tend to connect to hubs and low degree nodes tend to connect to low degree nodes. A natural
core-periphery structure emerges. In networks with low degree assortativity (r < 0) hubs tend to
connect to low degree nodes. Erdős-Rényi and Barabasi-Albert networks are neutral and have
degree assortativity close to 0.

The assortativity of a given network G = (N, L) can be adjusted by specific rewiring of the edges.

Algorithm: Xalvi-Brunet and Sokolov (XBS)

1. Choose two random links and name their adjacent nodes a, b, c, d such that ka ≥ kb ≥ kc ≥
kd where ki is the degree of node i.

2. Break the links and rewire depending on the goal:
• Increase assortativity

Join a with b and c with d.
• Increase disassortativity

Join a with d and b with c.

Repeat step 1 & 2 and stop after a certain number of non changing attempts.

To moderate the effect the tuned XBS model only does an assortative (disassortative) rewiring with
probability p. Otherwise the rewiring is random.
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3.2.2 Degree Correlation

Given a graph G = (N, L). For each node i ∈ N the average degree of its neighbors is calculated:

knn(i) =
1
ki

∑
j∈N

Aijk j

We define Nk = {n ∈ N|kn = k} ⊆ N the subset of nodes with degree k. The degree correlation
function is the average knn for all nodes of degree k. Thus, it is given with

knn(k) =
1
|Nk| ∑

i∈Nk

knn(i).

3.2.3 Stochastic Block Models

Block models allow to generate networks with communities.

Definition: Stochastic Block Model (SBM)

A stochastic block model generates a network G = (N, L) and is defined as tuple (k, z, M)

where

• k ∈N is the numbers of communities in the resulting network
• z ∈ {1, . . . , k}|N| indexing the nodes into communities
• M ∈ [0, 1]k×k where Muv denotes the probability that a vertex of group u connects to a

vertex in group v.

A stochastic block model can now be generated by adding edges between i and j corresponding to
the probability Mzizj where zi ∈ {1, . . . , k} is the community number of node i.

The probability of a graph G = (V, E) given a node labeling z ∈ {1, . . . , k}|V| and a block matrix M
is

P(G|z, M) = ∏
{i,j}∈E

Mzizj︸ ︷︷ ︸
edge

∏
{i,j}/∈E

(1−Mzizj)︸ ︷︷ ︸
non edge

4 Advanced Network Structure

4.1 Signed Networks

In signed networks each edge has either a positive sign or a negative sign. To evaluate these
networks we can take a look at the triangles. For triangles there are four different configurations
shown in Figure 5. Structural balance theory splits these configuration up into balanced and
imbalanced/stressed configurations. A network is balanced if all of its triangles are balanced.

Theorem: Harary’s Balance Theorem

A complete signed network is balanced only if it has two groups of nodes, where all nodes in
each group have positive ties only, and all the ties between the groups are negative. One of
the groups can be empty.
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+

+

balanced

+

+

−

imbalanced

+

−

−

balanced

−

−

−

imbalanced

Figure 5: Four possible configurations of signed triangles (strong formulation)

In the weak formulation of balance, triangles with negative edges only are also declared as balanced.

Theorem: Weak Structural Balance

A complete signed network is balanced if and only if it has an arbitrary number of groups of
nodes where all edges within groups are labeled with + and all edges between groups are
negative.

If there is an imbalanced triangle in a signed network, it can be an indicator that the network will
tend to change since it is currently out of equilibrium. In Figure 6 an example for this behavior is
shown. Here is shown that if a married couple is divorced it is likely that a common friend will

Friend

Husband Wife

+

+

+ ⇒
Friend

Husband Wife

+

−
divorce

+ ⇒
Friend

Husband Wife

−
reject

−

+

Figure 6: Example for Balance Theorem

only keep friendship with either the husband or the wife. This concept can also be applied to larger
scale. For example, the alliances formed before and during World War I followed this concept.

Comparing empirical signed networks with random signed networks reveals that there are much
more balanced triangles and much less imbalanced triangles in the empirical network than in
the random network. This fact suggests that structural balance theory does indeed describe signed
networks.

4.2 Directed Networks

Directed networks contain more information than their undirected counterpoints which is why
they are more complex. At dyadic (pairs of nodes) level directed networks allow four different
configuration instead of two. There is one configuration for a null dyad (no connection between
two nodes). There are two configurations for asymmetric dyads (ni → nj or ni ← nj). The last
configuration is the mutual dyad (ni ↔ nj).
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Definition: Dyadic Census

Measuring the number of mutual, asymmetric and null dyads is called dyadic census. Given a
directed graph G = (N, L) with the adjacency matrix X the dyads are defined as

Mutual: M = ∑
i,j∈N

i<j

XijXji

Asymmetric: A = |L| − 2M

Null:
(

n
2

)
− A−M

Thereby, a simple reciprocity value r can be calculated with r = 2M
|L| where r = 0 implies no

reciprocated edges and r = 1 implies that every edge is bidirectional.

Definition: Garlaschelli and Loffredo Reciprocity

Given a network G = (N, L) with the adjacency matrix X the Garlaschelli and Loffredo
reciprocity is defined as

ρ =

∑
i,j∈N,i ̸=j

(Xij − X′)(Xji − X′)

∑
i,j∈N,i ̸=j

(Xij − X′)2

where X′ = |L|
|N|(|N|−1) denotes the ratio of observed to possible links. It can be simplified to:

ρ =
r− X′

1− X′

It is ρ ∈ [−1, 1] where 1 is perfect reciprocity, −1 is no reciprocity and 0 is the expected value
of reciprocity of a random network.

Considering a network of three nodes. Between each pair of nodes we could place two different
directed edges ending up with a total of 6 different edges in the network. So, there are 26 = 64
different realizations. Some of these realizations are isomorphic with respect to swapping the node
labels. The isomorphic realizations are structurally indistinguishable from each other.

There are 16 isomorphic classes of triangles in directed networks called motifs. A triangle is called
closed if there exists at least one edge between each pair of nodes.

Definition: Triadic Census

To identify each of the isomorphic classes they can be labeled by four characters:

• Number of mutual dyads,
• Number of asymmetric dyads,
• Number of null dyads,
• Optional Character: D (for down), U (for up), T (for transitive), C (for cyclic).

The triadic census is now a tuple T ∈N16
0 counting the occurrence of each motif.

The transition from an ”open” triangle to a ”closed” triangle is called triadic closure.
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Definition: Triadic Census z-Score

The z-score indicates how much the occurrence of the motifs varies from randomized networks:

z =
x− E(x)

σx

where E(x) is the expected number of occurs of motif x in the null modela, calculated as
average of 1000 different realizations of the null model. σx is the standard derivation of the
occurs of the motif x over the realizations.

aA null model of a network is a modification of the original network where arbitrary many edges were randomly
swapped.

4.3 Temporal Networks

Temporal networks are used to describe a networks that may change over time. Edge in a temporal
network have timestamps indicating at which point in time they exist.

Definition: Temporal Network

A temporal network T defined by T = (V, S) where

• V is the set of nodes,
• S is a function mapping pairs of nodes to sets of timestamps:

S(u, v) = {t1, . . . , tn}

indicating that there are edges at times t1, . . . , tn from node u ∈ V to node v ∈ V.

In temporal network we can define a new kind of path that respects the given timing.

Definition: Time-Respecting Path

Given a temporal network G = (V, S). A time-respecting path from i0 ∈ V to in ∈ V is
defined as sequence

(i0, i1, t1), (i1, i2, t2), . . . , (in−1, in, tn)

where t1 < t2 < · · · < tn and tk ∈ S(ik−1, ik) for all k ∈ {1, . . . , n}.

The definition of time-respecting paths creates a new type of metric next to shortest paths. Fastest
paths consider the minimum time that is necessary to reach a certain node.

5 Dynamics and Spreading on Networks

5.1 Compartmental Models

There are models of different detail that help to understand the spreading of infectious diseases.
Each model has different compartments which individuals can switch between. For the following
section, remember that all models are wrong, but some are useful.
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5.1.1 SI-Model

The SI-model is the simplest of the epidemic models. The model adds one of the two compartments
susceptible and infected to each individual. Infected individuals spread the pathogens with probability
β to susceptible neighbors. Once an individual is infected it stays infected.

Susceptible Infected
Infection

Each individual has ⟨k⟩ contacts on average which get infected with probability β. It holds

δi
δt

= β⟨k⟩si and
δs
δt

= −β⟨k⟩si

where s is the fraction of susceptible and i the fraction of susceptible population.

By integration we get the fraction of infected population i after t time steps:

i =
i0eβ⟨k⟩t

1− i0 + i0eβ⟨k⟩t

where i0 is the fraction of infected population at time step 0.

The characteristic time τ is the time required to reach 1
e ≈ 36.8% of the susceptible individuals. For

the SI-model it is

τ =
⟨k⟩

β(⟨k2⟩ − ⟨k⟩) .

5.1.2 SIS-Model

Similar to the SI-model, the SIS-model has the two compartments susceptible and infected. In the
SIS-model infected individuals can recover and thereby switch back to the susceptible state.

Susceptible Infected
Infection

Recovery

Additional to the SI-model, infected individuals recover at a fixed rate µ. It holds

δi
δt

= β⟨k⟩si− µi

where s is the fraction of susceptible and i the fraction of infected population and µi is term that
captures the population that recovers from the disease.

The fraction of infected population i after t time steps is given with

i =
(

1− µ

β⟨k⟩

)
Ce(β⟨k⟩−µ)t

1 + Ce(β⟨k⟩−µ)t

where the initial condition i0 gives C = i0
(1−i0− µ

β⟨k⟩ )
.

21



In the SIS-model the epidemic has two possible outcomes based on the µ and β⟨k⟩. If µ < β⟨k⟩ the
model results in a endemic state where i(∞) = 1− µ

β⟨k⟩ of the population will be infected in the
long term. If µ > β⟨k⟩ the model results in a disease-free state where the initial infection dies out
quickly since the number of recovering individuals exceeds the number of infected individuals.

The basic reproduction number R0 is given with β⟨k⟩
µ . If R0 > 1, the epidemic results in the endemic

state.

The characteristic time for the SIS-model is given with

τ =
⟨k⟩

β(⟨k2⟩ − µ⟨k⟩) .

5.1.3 SIR-Model

In the SIR-model infected individuals are removed after some time (because of immunity or death)
instead returning to the susceptible state. Thereby, the whole population is removed in the long
term.

Susceptible Infected Removed
Infection Removal

Infected individuals are removed at a fixed rate γ:

δi
δt

= β⟨k⟩si− γi,
δs
δt

= −β⟨k⟩si,
δr
δt

= γi

where s is the fraction of susceptible, i the fraction of infected and r the fraction of removed
population.

5.1.4 SIRS-Model

In the SIRS-model we also consider that the individuals lose their immunity after some time. So,
removed individuals switch back to the susceptible state.

Susceptible Infected Removed
Infection Removal

Lose Immunity

Removed individuals lose their immunity at a fixed rate d:

δi
δt

= β⟨k⟩si− γi,
δs
δt

= dr− β⟨k⟩si,
δr
δt

= γi− dr

where s is the fraction of susceptible, i the fraction of infected and r the fraction of removed
population.
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5.2 Epidemic Threshold & Vaccinating Strategies

To predict whether a pathogen persists in the population, the spreading rate λ is defined:

λ =
β

µ

which only depends on the pathogen’s transmission probability β and recovery rate µ. A pathogen
is only able to spread if the epidemic threshold λc is exceeded.

For the SIS-model and a random network the epidemic threshold is

λc =
1

⟨k⟩+ 1
.

For the SIS-model and a scale-free network the epidemic threshold is

λc =
⟨k⟩
⟨k2⟩ .

For large networks ⟨k2⟩ diverges whereby the epidemic threshold λc vanishes. This means that even
viruses with a low transmission probability may spread successfully in a scale-free network.

To slow down an epidemic, the network structure can be exploited using a good vaccination strategy.
This is comparable to measuring the robustness against different attack strategies. In general,
vaccinating nodes with high degree (hubs) is a good vaccinating strategy. Unfortunately, in real
networks it is hard to identify the hubs. The friendship paradox helps choosing nodes to vaccinate.

Theorem: Friendship Paradox

On average, most people have fewer friends than their friends do.

The paradox suggests that vaccinating random neighbors might lead to a slowdown of the epidemic.
Empirical studies confirmed that the random neighbor vaccinating strategy is able slow down the
spread of a pathogen.

5.3 Threshold Models & Cascades

Today, many goods offer two kinds of value to the customer. The intrinsic value measures the good’s
value on its own with respect to the customer. The network value measures the value a customer
gets by other users using the product. Examples for these network goods are social media or
programming languages. The total value of a good with respect to customer x is defined as

p = r(x) · f (z)

where x ∈ [0, 1] represents all possible consumers, r(x) is a continuous, decreasing function
measuring x’s value of the good in isolation, z is the fraction of other individuals using the good
and f (z) measures the benefit of others using the good.

The equilibrium price for consumer z is now given with

pequ = r(z) · f (z).
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The previous analysis implicitly assumes that the network is homogeneous since it depends on the
fraction of all users of a good. Actually, the neighbors of an individual are relevant.

There are two alternatives A and B and each individual can adopt either A or B. If two nodes
linked by an edge both adopt A they get a payoff a > 0 and if both adopt B they get a payoff b > 0.
If their choice differs they get no payoff. A node should adopt A if

pda ≥ (1− p)db ⇔ p ≥ b
a + b

where d is the number of neighbors, p is the share of neighbors adopting A and a, b are payoff for
A and B.

Consider a network in which everyone is using B. Some initial adopters are attracted by A for some
intrinsic reasons. A node will adopt A if the fraction of A neighbors exceeds the threshold q = b

a+b .
If every node in the network adopts A the chain reaction is called complete cascade.

Definition: Densely Connected Group

A group of nodes is connected with density p if each node in the group has at least a fraction
p of its neighbors in the group.

Consider a set of initial adopters of A with a threshold q:

(i) If the remaining network contains a densely connected group of density greater than 1− q
then the initial adopters will not cause a complete cascade.

(ii) When a set of initial adopters does not cause a complete cascade, the remaining network must
contain a group of density greater than 1− q.

In the previous model of cascades everyone has the same payoffs and thereby the same threshold.
The model can be extended to heterogeneous payoffs whereby every node has its own threshold.
Heterogeneous threshold increase the complexity of densely connected groups blocking a complete
cascade since there are nodes that are easy to ”convince” and nodes that are hard to ”convince”.
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