
tightcenter

1

panikzettel.htwr-aachen.de

Static Program Analysis Panikzettel
Philipp Schröer

Version 2 — 15.02.2019

Contents

2

https://panikzettel.htwr-aachen.de

1 Introduction

This Panikzettel is about the lecture Static Program Analysis by Prof. Noll held in the summer
semester 2018.

This Panikzettel is Open Source. We appreciate comments and suggestions at
https://git.rwth-aachen.de/philipp.schroer/panikzettel.

2 Dataflow Analysis

Dataflow analysis is a form of program analysis that is based on flows of information through
the analyzed program. There are several ways to distinguish program analyses: Dependence on
statement orders (flow-sensitivity), the flow direction (forward/backward), the quantification of flows
over paths (may, i.e. union, or must, i.e. intersection), and the scope w.r.t. procedures (interprocedural
vs. intraprocedural).

2.1 The WHILE Language

We describe flows between labelled statements. We use WHILE programs as our example language.
Here, dataflow information is associated with skip statements, assignments and tests in if and
while statements.

Definition: Labelled WHILE programs

a : : = z | x | a1+a2 | a1−a2 | a1∗a2 ∈ AExp
b : : = t | a1=a2 | a1>a2 | ¬ b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c : : = [skip] l | [x := a] l | c1 ; c2 |

i f [b] l then c1 e l s e c2 end |
while [b] l do c end ∈ Cmd

We assume all labels in c ∈ Cmd are distinct, and denoted by Labc.

Labelled fragments of c are called blocks, written as Blkc.

3

https://git.rwth-aachen.de/philipp.schroer/panikzettel

2.2 Algebraic Foundations

Definition: Partial Order

A partial order (D,v) has a domain D and a
relation v ⊆ D× D, where ∀ d1, d2, d3 ∈ D:

Reflexivity

d1 v d1

Transitivty

d1 v d2 ∧ d2 v d3 ⇒ d1 v s3

Antisymmetry

d1 v d2 ∧ d2 v d1 ⇒ d1 = d2

To combine information in our dataflow systems,
we use complete lattices. A complete lattice is a
partial order with upper bounds for all subsets
(also called supremum or joina). Equivalently, one
can require lower bounds for all subsets (also
called infimum or meetb).

afrom set theory, the union is what you get when you join
sets

bfrom set theory, the intersection is where two sets meet

Definition: (Least) Upper Bound,
(Greatest) Lower Bound

Let (D,v) be a partial order with S ⊆ D.

1. d ∈ D is an upper bound of S (S v d) if
s v d ∀ s ∈ S.

2. d is a least upper bound of S (d =
⊔

S) if
d v d′ for every upper bound d′ of S.

Analogous definitions for lower bound and
greatest lower bound.

Definition: Complete Lattice

A complete lattice is a
• partial order (D,v),
• such that all S ⊆ D have

least upper bounds, or equivalently,
greatest lower bounds.

The least element is ⊥ :=
⊔

∅.
The greatest element is > :=

d
∅.

The Ascending Chain Condition (ACC) guarantees
termination of the fixpoint algorithm by limiting
ascending chains to be finite.

For example, (N,≤) does not fulfill ACC be-
cause e.g. 1, 2, . . . is an ascending chain that does
not stabilise.

Definition: Ascending Chain Condition

A partial order (D,v) satisfies ACC if
each ascending chain eventually stabilises:
∃ n ∈N : dn = dn+1 =

Chain: A subset S ⊆ D with ∀ d1, d2 ∈ S:
d1 v d2 or d2 v d1. Ascending chain: di v
di+1 ∀ i ∈N.

Definition: Monotonicity

Let (D,v) and (D′,v′) be partial orders.
Φ : D → D′ is monotonic if ∀ d1, d2 ∈ D:
d1 v d2 ⇒ Φ(d1) v′ Φ(d2).

Definition: Fixpoint

d is a fixpoint of Φ : D → D if Φ(d) = d.

Theorem: Fixpoint Theorem by Kleene

Let (D,v) be a complete lattice satisfying
ACC and Φ : D → D monotonic. Then

fix(Φ) :=
⊔{

Φk(⊥)
∣∣∣ k ∈N

}
is the least fixpoint of Φ where

Φ0(d) := d

Φk+1(d) := Φ(Φk(d))

4

2.3 Dataflow System

Definition: Initial and Final Labels

init : Cmd→ Lab

final : Cmd→ 2Lab

Definition: Flow Relation

flow(c) ⊆ Lab× Lab

flowR(c) := { (l′, l) | (l, l′) ∈ flow(c) }

c ∈ Cmd init(c) final(c) flow(c)
[skip]l l { l } ∅

[x := a]l l { l } ∅
c1;c2 init(c1) final(c2) flow(c1) ∪ flow(c2) ∪ final(c1)× { init(c2) }

if [b]l then c1 else c2 end l final(c1) ∪ final(c2) flow(c1) ∪ flow(c2) ∪ { (l, init(c1)), (l, init(c2)) }
while [b]l do c end l { l } flow(c) ∪ { (l, init(c) } ∪ final(c)× { l }

A dataflow system describes how program analysis data flows between statements in our labelled
program. If we are doing a forward analysis, we choose { init(c) } as the extremal labels to start the
analysis with. Otherwise we start at all final(c). All extremal labels are assigned the extremal value ι.
Then, using our transfer functions φl for each label l ∈ Lab, we propagate and process information
through the program. The edges for propagation are given by the flow relation F, which is either
flow(c) or flowR(c).

Definition: Dataflow System

A dataflow system S = (Lab, E, F, (D,v), ι, φ) consists of
• a finite set of program labels Lab,
• a set of extremal labels E ⊆ Lab (here: { init(c) } or final(c)),
• a flow relation F ⊆ Lab× Lab (here: flow(c) or flowR(c)),
• a complete lattice (D,v) satisfying ACC

(with LUB operator t and least element ⊥),
• an extremal value ι ∈ D (for the extremal labels),
• a familiy of monotonic transfer functions { φl | l ∈ Lab } of type φl : D → D.

Definition: Dataflow Equation System

Given a dataflow system S = (Lab, E, F, (D,v), ι, φ) and w.l.o.g. Lab = { 1, . . . , n }

• S determines the equation system (where l ∈ Lab) AIl =

{
ι if l ∈ E,⊔
{ φl′(AIl′) | (l, l′) ∈ F } otherwise

• (d1, . . . , dn) ∈ Dn is called a solution if dl =

{
ι if l ∈ E,⊔
{ φl′(dl′) | (l, l′) ∈ F } otherwise

• S determines the transformation ΦS : Dn → Dn : (d1, . . . , dn) → (d′1, . . . , d′n) where

d′l =

{
ι if l ∈ E,⊔
{ φl′(dl′) | (l, l′) ∈ F } otherwise

Note that non-minimal solutions to dataflow equation systems are not always unique.

5

2.4 Fixpoint Iteration

One can prove that (d1, . . . , dn) ∈ Dn solves the equation system if and only if it is a fixpoint of ΦS.
Basically it’s because we have a complete lattice satisfying ACC and a monotonic transfer function.

We can compute this (least) fixpoint by fixpoint iteration: fix(ΦS) =
⊔ {

Φk
S(⊥Dn)

∣∣ k ∈N
}

(see
Kleene’s Fixpoint theorem). It requires at most m · n steps, where m is the height of the lattice.

We can also compute the fixpoint more efficiently by using a worklist algorithm. The algorithm keeps
a list of control-flow edges to be processed. It iteratively removes an edge (l, l′) from the list and
computes φl(AIl). If it detects that a fixpoint has not been reached (φl(AIl) 6v AIl′), then AIl′ is
updated: AIl′ := AIl′ t φl(AIl), and all edges from l′, (l′, l′′), are added to the worklist.

2.5 Meet Over All Paths (MOP)

Definition: MOP Solution

mop(S) = (mop(l1), . . . , mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) =
⊔
{ φπ(ι) | π ∈ Path(l) } .

Definition: Paths

Given a dataflow system
S = (Lab, E, F, (D,v), ι, φ),
the set of paths up to l ∈ Lab is given by

Path(l) =

 [l1, . . . , lk−1]

∣∣∣∣∣∣
k ≥ 1, l1 ∈ E,
(li, li+1) ∈ F
∀ 1 ≤ i < k, lk = l



The other method to solve dataflow equation systems is Meet Over All Paths (MOP). It is the
“reference solution”, but unfortunately it is undecidable to compute in the general case.

The MOP solution for a block Bl is given by the least upper bound over all paths leading to l.

2.6 Coincidence of MOP and Fixpoint Solution

Theorem: The Coincidence

If the dataflow system S is distributive:

mop(S) = fix(ϕS)

If a dataflow system is distributive, the MOP
solution and the fixpoint solution are equal. This
is nice, as we can guarantee the optimal result
of MOP while still guaranteeing decidability, as
well as decent performance.

Definition: Distributivity

Let (D,v) and (D′,v′) be complete lat-
tices. A function F : D → D′ is called
distributive, if, for every d1, d2 ∈ D,

F(d1 tD d2) = F(d1) tD′ F(d2).

A dataflow system is distributive if every
ϕl is distributive.

2.7 Dataflow Analysis with Non-ACC Domains

We can also do a dataflow analysis with domains that do not fulfill the Ascending Chain Condition.
The trick to prevent nontermination is to use widening operators which generate an imprecise result
to ensure ACC again.

6

Definition: Widening Operator

Let (D,v) be a complete lattice.
A mapping ∇ : D× D → D is called a widening operator if

• ∀ d1, d2 ∈ D: d1 t d2 v d1∇d2,
• for all ascending chains d0 v d1 v . . ., the ascending chain d∇0 v d∇1 v . . . eventually

stabilises, where d∇0 = d0 and d∇i+1 = d∇i ∇di+1.

We can modify the worklist algorithm to use the widening operator. In the update step, we simply
do AIl′ := AIl′∇φl(AIl) instead of AIl′ := AIl′ t φl(AIl). Note that in contrast to t the widening
operator ∇ does not require commutativity, associativity, monotonicity nor absorption (d∇d = d).
On the other hand, only fix∇(ΦS) w fix(ΦS) (soundness) is guaranteed.

Widening may lead to very imprecise results, which can be improved by narrowing again. Let
fix∇(ΦS) be the result of widening (e.g. using the algorithm above). Narrowing applies ΦS k times
(for some k), so the end result is Φk

S(fix∇(ΦS)).

2.8 Analysis Using Conditional Branches

Previously, our analyses did not use information from branches – so for example code following a
successful equality check a = 3 could not be analysed with this fact. In the lecture, we introduced
an assert [fact] statement that is inserted after each branch. Then it is possible to simply extend
the transfer functions to work with assert information.

3 Abstract Interpretation

Abstract interpretation is a theory of sound approximation of program semantics. The execution is
abstracted to work on abstract values (e.g. parity, intervals, or types!).

3.1 Galois Connections

A Galois connection is a pair of monotonic func-
tions between lattices: The abstraction α and the
concretisation γ. L is the domain of sets of con-
crete values and M the one for abstract values.

The two conditions ensure that α is an over-
approximation (1) and that concretisation fol-
lowed by abstraction does not lose precision (2).

Galois connections have a few useful properties:

Definition: Galois Connection

Let (L,vL), (M,vM) be complete lattices.
A pair (α, γ) of monotonic functions α :
L → M, γ : M → L is called a Galois
connection if

1. ∀ l ∈ L : l vL γ(α(l)) and
2. ∀ m ∈ M : α(γ(m)) vM m.

• α(l) vM m ⇐⇒ l vL γ(m).
• γ is uniquely determined by α: γ(m) =

⊔
{ l ∈ L | α(l) vM m }.

• α is uniquely determined by γ: α(m) =
d
{m ∈ M | l vL γ(m) }.

• α is completely distributive: ∀ L′ ⊆ L : α(
⊔

L′) =
⊔
{ α(l) | l ∈ L′ }.

• γ is completely multiplicative: ∀ M′ ⊆ M : γ(
d

M′) =
d
{ γ(m) | m ∈ M′ }.

7

3.2 Safe Approximation of Functions

Given a Galois connection, we want to approximate functions directly and safely. E.g. when we
are doing parity abstraction, we want to directly approximate f = + in our approximation domain
({ 0, 1 }) by some f # = +#. The intuition is that f # should cover all concrete results of f .

Definition: Safe Approximation

Let (α, γ) be a Galois connection and let f : Ln → L and f # : Mn → M be functions of rank
n ∈N. We call f # a safe approximation of f if

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . , mn) ∀m1, . . . , mn ∈ M.

Additionally, f # is called most precise if the reverse inclusion is also true:

α(f (γ(m1), . . . , γ(mn))) = f #(m1, . . . , mn) ∀m1, . . . , mn ∈ M.

Usually, f and f # are monotonic. Then, the following theorem allows us to simplify the safety proof:

Theorem: Safe Approximation with Monotonic f

If f : Ln → L and f # : Mn → M are both monotonic, then f # is a safe approximation of f if

α(f (l1, . . . , ln)) vM f #(α(l1), . . . , α(ln)) ∀ l1, . . . , ln ∈ L.

3.3 Safe Approximation of Extraction Functions

We define an extraction function β that determines
a Galois connection (α, γ):

α : L→ M, l 7→ { β(c) | c ∈ l } ,

γ : M→ L, m 7→ { c ∈ C | β(c) ∈ m } .

Definition: Extraction Function

If L = 2C and M = 2A with vL=vM=⊆,
then β : C → A is an extraction function.

Theorem: Most Precise Abstraction of an Extraction Function

If β : C → A is an extraction function, the most precise abstraction of f is

f # : Mn → M, (m1, . . . , mn) 7→
{

β(f (c1, . . . , cn))
∣∣∣ ∀ i ∈ { 1, . . . , n } : ci ∈ β−1(mi)

}
.

3.4 Abstract Semantics (of WHILE)

A normal execution relation for WHILE statements→ ⊆ (Cmd× Σ)× (Cmd↓ × Σ) is a relation of
configurations 〈c, σ〉. σ ∈ Σ is the mapping of variable valuations σ : Var→ Z. c is either a statement
or, for Cmd↓, also possibly the ↓ symbol which indicates execution termination.

From this we get the concrete domain L := (2Σ,⊆) and the concrete transition function family with
c ∈ Cmd, c′ ∈ Cmd∪ { ↓ }: nextc,c′ : 2Σ → 2Σ, S 7→ { σ′ ∈ Σ | ∃ σ ∈ S : 〈c, σ〉 → 〈c′, σ′〉 }.

8

For an abstract domain Abs, the abstract semantics is defined by the function family next#
c,c′ : Abs→

Abs (as above) and where each next#
c,c′ safely approximates nextc,c′ , i.e.

α(nextc,c′(γ(abs))) vAbs next#
c,c′(abs).

Definition: Abstract WHILE-Program State

Let β : N→ A be an extraction function.
• An abstract program state ρ is an element of the set { ρ | ρ : Var→ A } called the abstract

state space.
• The abstract domain is denoted by Abs := 2Var→A.
• The abstraction function α : 2Σ → Abs is given by α(S) := { β ◦ σ | σ ∈ S }.

The abstract transition function for WHILE is defined via the abstract execution relation (not in this
Panikzettel): next#

c,c′(abs) :=
⋃
{ abs′ ∈ Abs | 〈c, abs〉 ⇒ 〈c′, abs′〉 }. We have shown the abstract

transition function’s soundness: It is a safe approximation for the concrete transition function.

3.5 Counterexample-Guided Abstraction Refinement (CEGAR)

CEGAR addresses the problem of choosing the appropiate approximation for an analysis by refining
abstractions until the property is satisifed or an error is found. The iterative refinement may not
terminate.

3.5.1 Predicate Abstraction

Definition: Predicate Abstraction

Let Var be a set of variables.
• A predicate is a Boolean expression p ∈ BExp over Var.
• A state σ ∈ Σ satisfies p (σ |= p) if valσ(p) = true.
• p implies q if σ |= q whenever σ |= p.
• p and q are equivalent if p |= q and q |= p.
• p and q are independent if p 6|= q and q 6|= p.
• Let P = { p1, . . . , pn } ⊂ BExp be a finite set of predicates.

Let ¬P = { ¬p1, . . . ,¬pn }. An element of P ∪ ¬P is called a literal.

The predicate abstraction lattice is defined by:

Abs(P) :=
({∧

Q
∣∣∣ Q ⊆ P ∪ ¬P

}
∪ { false } , |=

)
We abbreviate true :=

∧
∅, and false :=

∧
{ pi,¬pi, . . . } if P 6= ∅.

The predicate abstraction lattice Abs(P) is a complete lattice with
⊥ = false, > = true, Q1 uQ2 = Q1 ∧Q2, Q1 tQ2 = Q1 ∨Q2.

b :=
∧
{ q ∈ P ∪ ¬P | b |= q } is the strongest fomula that is implied by b.

Handy rules only if predicates in P are pairwise independent:
Q1 uQ2 (= Q1 ∧Q2) =

∧
(Q1 ∪Q2) Q1 tQ2 (= Q1 ∨Q2) =

∧
(Q1 ∩Q2)

9

The Galois connection for predicate abstraction is determined by

α : 2Σ → Abs(P) γ : Abs(P)→ 2Σ

α(S) :=
⊔
{Qσ | σ ∈ S } γ(Q) := { σ ∈ Σ | σ |= Q }

where Qσ :=
∧
({ p ∈ P | σ |= p } ∪ { ¬p ∈ ¬P | σ 6|= p }).

In the lecture, the execution relation for predicate abstraction was defined (not shown here). 〈c, false〉
represents an unreachable configuration (there is no σ ∈ Σ s.t. σ |= false). If P = ∅, then
Abs(P) = { true, false }. If additionally no b ∈ BExpc is a tautology or a contradiction, then the
abstract transition system with initial configuration 〈c, true〉 corresponds to the control flow graph
of c.

Also of note: Computing the strongest formula in Abs(P) implied by b, b, is not possible in general.

3.5.2 Counterexamples

Definition: Counterexample

A counterexample is a sequence of k ≥ 1 abstract transitions of the form 〈c0, Q0〉 ⇒ 〈c1, Q1〉 ⇒
. . . ⇒ 〈ck, Qk〉 where c0, . . . , ck ∈ Cmd (or ck =↓), Q0, . . . , Qk ∈ Abs(P) with Q0 = true and
Qk 6≡ false.

A counterexample is real (otherwise spurious) if there are concrete states σ0, . . . , σk ∈ Σ s.t.
∀ i ∈ { 1, . . . , k } : σi |= Qi and 〈ci−1, σi−1〉 → 〈ci, σi〉

Assume now we have analyzed the program with some abstraction and found a counterexample
for the property. The counterexample is a path to a location that does not satisfy the property. But
we need to find out if the path is really possible (if the counterexample is spurious or not).

If the counterexample is spurious, we can collect conditions (strongest postconditions) along the
path showing that the end is unreachable.

Theorem: Elimination of Spurious Counterexamples

If 〈c0, true〉 ⇒ . . . ⇒ 〈ck, Qk〉 is a spurious counterexample, there are Boolean expres-
sions b0, . . . , bk with b0 ≡ true and bk ≡ false and ∀ i ∈ { 1, . . . , k } , σ, σ′ ∈ Σ : σ |=
bi−1 ∧ (〈ci−1, σ〉 → 〈ci, σ′〉)⇒ σ′ |= bi.

3.5.3 Abstraction Refinement

With b0, . . . , bk from the previous theorem, we can refine our abstraction so that the spurious coun-
terexample cannot happen anymore. Specifically, we set P′ := P ∪ { p1, . . . , pn } where p1, . . . , pn

are the atomic conjuncts occurring in b1, . . . , bk.

10

3.5.4 Using Craig Interpolants

Craig interpolants help us to simplify predicates
so that they only contain variables relevant for
the current execution path.

We omit the algorithm for computing Craig In-
terpolants here.

Definition: Craig Interpolant

Let b1, b2 ∈ BExp where b1 |= b2.
A Craig interpolant of b1 and b2 is a formula
b3 ∈ BExp with b1 |= b3, b3 |= b2 and
Varb3 ⊆ Varb1 ∩Varb2 .

4 Interprocedural Dataflow Analysis

Our dataflow analysis framework from before was only intraprocedural, that is without support for
user-defined functions. This section extends the framework to support interprocedural analysis. The
extension follows the functional approach which summarizes function effects. Declarations are only
allowed on the top level, and mutual recursion is supported. Function calls have one call-by-value
and one call-by-result parameter.

Definition: A Language With Procedures

Syntactic Categories

Category Domain Meta variable
Procedure identifiers Pid = { P, Q, . . . } P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar

p :== proc [P (val x , r e s y)] ln i s c [end] lx ; p | ε ∈ PDec
c :== [skip] l | [x := a] ˆ l | c1 ; c2 | i f [b] ˆ l then c1 e l s e c2 end |

while [b] l do c end | [c a l l P (a , x)] lc
lr
∈ Cmd

Note that calls are annotated with call (lc) and return (lr) locations.

init, final and flow relations are extended from WHILE as follows:

proc[P(val x, res y)]ln is c [end]lx [call P(a, x)]lc
lr

init(. . .) ln lc

final(. . .) { lx } { lr }
flow(. . .) { (ln, init(c) } ∪ flow(c) ∪ { (l, lx) | l ∈ final(c) } { (lc; ln), (lx; lr) }

The interprocedural flow of a program is defined by:

iflow =

{
(lc, ln, lx, lr)

∣∣∣∣ p contains proc with ln and lr and
c contains call with lr and lc

}
⊆ Lab4

11

4.1 Meet Over All Valid Paths (MVP)

Similar to the Meet Over all Paths (MOP) solution we define the Meet over all Valid Paths (MVP)
solution.

Definition: Valid Path Fragments

Given a dataflow system S = (Lab, E, F, (D,v), ι, φ) and l1, l2 ∈ Lab, the set of valid paths from
l1 to l2 is generated by the nonterminal symbol P[l1, l2] according to the following context-free
grammar:

P[l1, l2]→ l1 if l1 = l2
P[l1, l3]→ l1, P[l2, l3] if (l1, l2) ∈ F

P[lc, l]→ lc, P[ln, lx], P[lr, l] if (lc, ln, lx, lr) ∈ iflow

Definition: Complete Valid Paths

Let S be a dataflow system. For every l ∈ Lab, the set of valid paths up to l is given by

VPath(l) = { [l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l, [l1, . . . , lk] valid path from l1 to lk }

For π = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function by

φπ = φk−1 ◦ . . . ◦ φl1 ◦ idD

Definition: MVP solution

Let S be a dataflow system where Lab = { l1, . . . , ln }. The MVP solution for S is determined
by

mvp(S) = (mvp(l1), . . . , mvp(ln)) ∈ Dn

where, for every l ∈ Lab,

mvp(l) =
⊔
{ φπ(ι) | π ∈ VPath(l) } .

As an extension of MOP, MVP is undecidable as well.

12

4.2 Fixpoint Solution

The interprocedural fixpoint solution extends its intraprocedural counterpart as well. The idea is to
represent the combined effect of procedure executions by procedure summaries.

Definition: Interprocedural Dataflow Equation System

• Dataflow equations for each l ∈ Lab:

AIl =


ι if l ∈ E,

AIlc if l = lr for some (lc, ln, lx, lr) ∈ iflow,⊔
{ ϕl′(AIl′ | (l′, l) ∈ F, (l′; l) ∈ F } otherwise

• Node transfer functions for each l ∈ Lab \ { lx | (lc, ln, lx, lr) ∈ iflow }:

ϕl(d) =

{
combine(d, Φlx(ϕlc(d)) if l = lr for some (lc, ln, lx, lr) ∈ iflow,

specific to analysis otherwise

• Procedure summary functions for each l ∈ Lab in a procedure:

Φl(d) =


d if l = ln for some (lc, ln, lx, lr) ∈ iflow,

Φlc(d) if l = lr for some (lc, ln, lx, lr) ∈ iflow,⊔
{ ϕl′(Φl′(d)) | (l′, l) ∈ F } otherwise

The above equation system is recursive in both AIl (type D) and Φl (type D → D).

To solve this equation system, we can use the induced monotonic functional on the complete lattice:

ΨŜ : Dn︸︷︷︸
AI

× (D → D)m︸ ︷︷ ︸
Φ

→ Dn × (D → D)m (n = |Lab|, m ≤ n)

Now we can use fixpoint iteration:

fix(ΨŜ) =
⊔{

Ψk
Ŝ
(⊥)

∣∣∣ k ∈N
}
∈ Dn × (D → D)m, ⊥ = (⊥n

D, [d→ ⊥D | d ∈ D]m)

13

	Introduction
	Dataflow Analysis
	The WHILE Language
	Algebraic Foundations
	Dataflow System
	Fixpoint Iteration
	Meet Over All Paths (MOP)
	Coincidence of MOP and Fixpoint Solution
	Dataflow Analysis with Non-ACC Domains
	Analysis Using Conditional Branches

	Abstract Interpretation
	Galois Connections
	Safe Approximation of Functions
	Safe Approximation of Extraction Functions
	Abstract Semantics (of WHILE)
	Counterexample-Guided Abstraction Refinement (CEGAR)
	Predicate Abstraction
	Counterexamples
	Abstraction Refinement
	Using Craig Interpolants

	Interprocedural Dataflow Analysis
	Meet Over All Valid Paths (MVP)
	Fixpoint Solution

